Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 018201    DOI: 10.1088/1674-1056/ae111b
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

EDIS: A simulation software for dynamic ion intercalation/deintercalation processes in electrode materials

Liqi Wang(王力奇)1,2, Ruijuan Xiao(肖睿娟)1,2,†, and Hong Li(李泓)1,2
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  As the core determinant of lithium-ion battery performance, electrode materials play a crucial role in defining the battery’s capacity, cycling stability, and durability. During charging and discharging, electrode materials undergo complex ion intercalation and deintercalation processes, accompanied by defect formation and structural evolution. However, the microscopic mechanisms underlying processes such as cation disordering, lattice oxygen loss, and stage structure formation are still not fully understood. To address these challenges, we have developed the Electrode Dynamic Ion Intercalation/Deintercalation Simulator (EDIS), a software platform designed to simulate the dynamic processes of ion intercalation and deintercalation in electrode materials. Leveraging high-precision machine learning potentials, EDIS can efficiently model structural evolution and lithium-ion diffusion behavior under various states of charge and discharge, achieving accuracy approaching that of quantum mechanical methods in relevant chemical spaces. The software supports quantitative analysis of how variations in lithium-ion concentration and distribution affect lithium-ion transport properties, enables evaluation of the impact of structural defects, and allows for tracking of both structural evolution and transport characteristics during continuous cycling. EDIS is versatile and can be extended to sodium-ion batteries and related systems. By enabling in-depth analysis of these microscopic processes, EDIS provides a robust theoretical tool for mechanistic studies and the rational design of high-performance electrode materials for next-generation lithium-ion batteries.
Keywords:  electrode materials      ion (de)intercalation      dynamic simulation      machine learning potential  
Received:  14 August 2025      Revised:  02 October 2025      Accepted manuscript online:  09 October 2025
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.20.Wt (Computational modeling; simulation)  
  82.20.Fd (Collision theories; trajectory models)  
  66.30.Pa (Diffusion in nanoscale solids)  
Fund: This work was financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB1040300) and the National Natural Science Foundation of China (Grant No. 52172258).
Corresponding Authors:  Ruijuan Xiao     E-mail:  rjxiao@iphy.ac.cn

Cite this article: 

Liqi Wang(王力奇), Ruijuan Xiao(肖睿娟), and Hong Li(李泓) EDIS: A simulation software for dynamic ion intercalation/deintercalation processes in electrode materials 2026 Chin. Phys. B 35 018201

[1] Sharma R, Kumar H, Kumar G, Sharma S, Aneja R, Sharma A K, Kumar R and Kumar P 2023 Chem. Eng. J. 468 143706
[2] Zhang Y, Wang J and Xue Z 2023 Adv. Funct. Mater. 34 2311925
[3] Lee J, Zhang Q, Kim J, Dupre N, Avdeev M, Jeong M, Yoon W, Gu L and Kang B 2019 Adv. Energy Mater. 10 1902231
[4] Xu J, Cai X, Cai S, Shao Y, Hu C, Lu S and Ding S 2023 Energy Environ. Mater. 6 e12450
[5] Chen G, Yan L, Luo H and Guo S 2016 Adv. Mater. 28 7580
[6] Huang Q, Zhang X, Wu F, Chen R and Li L 2023 Energy Storage Mater. 63 103050
[7] Ren P, Lu Z, Song M, Lee J, Zheng J, Sushko P V and Li D 2021 Adv. Energy Mater. 11 2003548
[8] Eto Y, So M, Yano T and Inoue G 2024 Meet. Abstr. MA2024-02 4416
[9] Luo B, Li H, Qi H, Liu Y, Zheng C, Du W, Zhang J and Chen L 2024 J. Energy Chem. 88 327
[10] Li J, Lin C, Weng M, Qiu Y, Chen P, Yang K, Huang W, Hong Y, Li J, Zhang M, Dong C, Zhao W, Xu Z, Wang X, Xu K, Sun J and Pan F 2021 Nat. Nanotechnol. 16 599
[11] Huang Y, Li P, Wei H, Luo Y H, Chen M, Liu S, Yin W, Zhang X H and Zheng J C 2025 ACS Nano 19 23719
[12] Zhang S, Yang Z, Lu Y, Xie W, Yan Z and Chen J 2024 Adv. Energy Mater. 36 2402068
[13] Zhao H, Li J, Zhao Q, Huang X, Jia S, Ma J and Ren Y 2024 Electrochem. Energy Rev. 7 11
[14] Huang Q, Zhang X, Wu F, Chen R and Li L 2023 Energy Storage Mater. 63 103050
[15] Xu X, Han X, Lu L, Wang F, Yang M, Liu X, Wu Y, Tang S, Hou Y, Hou J, Yu C and Ouyang M 2024 J. Power Sources 603 234445
[16] Zeng C, Liang J, Cui C, Zhai T and Li H 2022 Adv. Mater. 34 2200777
[17] Hapuarachchi S N S, Sun Z and Yan C 2018 Adv. Sustainable Syst. 2 1700182
[18] You S P 2012 Appl. Mech. Mater. 189 453
[19] Louie S G, Chan Y H, da Jornada F H, Li Z and Qiu D Y 2021 Nat. Mater. 20 728
[20] Pathrudkar S, Thiagarajan P, Agarwal S, Banerjee A S and Ghosh S 2024 npj Comput. Mater. 10 175
[21] Hoja J, Reilly A M and Tkatchenko A 2016 WIREs Comput. Mol. Sci. 7 e1294
[22] Wen D, Tucker V and Titus M S 2024 npj Comput. Mater. 10 210
[23] Chen Y, Zhang L, Wang H and E W 2020 J. Chem. Theory Comput. 17 170
[24] Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A 2018 Nature 559 547
[25] Prasnikar E, Ljubic M, Perdih A and Borisek J 2024 Artif. Intell. Rev. 57 102
[26] Zhou X Y, Wu H H, Zhang J, Ye S, Lookman T and Mao X 2025 J. Mater. Sci. Technol. 223 91
[27] Lee J, Ju S, Hwang S, You J, Jung J, Kang Y and Han S 2024 ACS Appl. Mater. Interfaces 16 46442
[28] Xie Y, Bu M, Zhang Y and Lu G 2023 J. Mol. Liq. 383 122112
[29] Pacini A, Ferrario M and Righi M C 2025 J. Chem. Theory Comput. 21 7102
[30] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171
[31] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012
[32] Wang Y, Shao W, Jin H, Wang Q, Xiao R and Li H 2025 Mater. Today Energy 49 101841
[33] Zhang B, Chen G, Liang Y and Xu P 2009 Solid State Ionics 180 398
[34] Yue P, Wang Z, Guo H, Xiong X and Li X 2013 Electrochim. Acta 92 1
[35] Nishida Y, Nakane K and Satoh T 1997 J. Power Sources 68 561
[36] Park G T, Kim S B, Namkoong B, Park N Y, Kim H, Yoon C S and Sun Y K 2023 Mater. Today 71 38
[37] Molenda J 2002 Solid State Ionics 146 73
[38] Ma Y, Teo J H, Kitsche D, Diemant T, Strauss F, Ma Y, Goonetilleke D, Janek J, Bianchini M and Brezesinski T 2021 ACS Energy Lett. 6 3020
[39] Li W, Currie J C and Wolstenholme J 1997 J. Power Sources 68 565
[40] Huang Q, Zhang X, Wu F, Chen R and Li L 2023 Energy Storage Mater. 63 103050
[41] Yamaki J, Makidera M, Kawamura T, Egashira M and Okada S 2006 J. Power Sources 153 245
[42] Gan Q, Qin N, Yuan H, Lu L, Xu Z and Lu Z 2023 EnergyChem 5 100103
[43] Konar S, Hausserman U and Svensson G 2015 Chem. Mater. 27 2566
[44] Tao L, Xia D, Sittisomwong P, Zhang H, Lai J, Hwang S, Li T, Ma B, Hu A, Min J, Hou D, Shah S R, Zhao K, Yang G, Zhou H, Li L, Bai P, Shi F and Lin F 2024 J. Am. Chem. Soc. 146 16764
[45] Papaderakis A A, Ejigu A, Yang J, Elgendy A, Radha B, Keerthi A, Juel A and Dryfe R A W 2023 J. Am. Chem. Soc. 145 8007
[46] Zhao Y, Zhang Y, Wang Y, Cao D, Sun X and Zhu H 2021 Carbon Energy 3 895
[47] Zhao W, Zhao C, Wu H, Li L and Zhang C 2024 J. Energy Storage 81 110409
[48] Chae S, Choi S, Kim N, Sung J and Cho J 2019 Angew. Chem. Int. Ed. 59 110
[49] Wang F, Yi J, Wang Y, Wang C, Wang J and Xia Y 2013 Adv. Energy Mater. 4 1300600
[50] Yao J, Zhu G, Huang J, Meng X, Hao M, Zhu S, Wu Z, Kong F, Zhou Y, Li Q and Diao G 2024 Molecules 29 4108
[51] Oka H, Makimura Y, Uyama T, Nonaka T, Kondo Y and Okuda C 2021 J. Power Sources 482 228926
[52] Kim H S, Hyun J C, Choi Y, Ha S, Kang D H, Heo Y H, Kwak J H, Yoon J, Lee J B, Kim J Y, Jin H J, Lee J, Lim H and Yun Y S 2024 Energy Storage Mater. 70 103514
[53] Kitamura T, Takai S, Yabutsuka T and Yao T 2020 J. Phys. Chem. Solids 142 109440
[54] Dimiev A M, Shukhina K, Behabtu N, Pasquali M and Tour J M 2019 J. Phys. Chem. C 123 19246
[55] Insinna T, Bassey E N, Marker K, Collauto A, Barra A L and Grey C P 2023 Chem. Mater. 35 5497
[56] Wu X, Song B, Chien P, Everett S M, Zhao K, Liu J and Du Z 2021 Adv. Sci. 8 2102318
[57] Insinna T, Barra A L and Grey C P 2025 Chem. Mater. 37 5167
[58] Li Y, Lu Y, Adelhelm P, Titirici M M and Hu Y S 2019 Chem. Soc. Rev. 48 4655
[59] Dresselhaus M S and Dresselhaus G 2002 Adv. Phys. 51 1
[60] Drue M, Seyring M and Rettenmayr M 2017 J. Power Sources 353 58
[61] Weng S, Wu S, Liu Z, Yang G, Liu X, Zhang X, Zhang C, Liu Q, Huang Y, Li Y, Ates M N, Su D, Gu L, Li H, Chen L, Xiao R, Wang Z and Wang X 2022 Carbon Energy 5 e224
[62] Wan W and Wang H 2015 Materials 8 6163
[63] Shen D, Ren Z, Wei S, Ji Y, Ma Y, Yang Y, Dong W and Tang S 2024 Phys. Chem. Chem. Phys. 26 28386
[64] Sonia F J, Aslam M and Mukhopadhyay A 2020 Carbon 156 130
[65] Zhang Z, Uene N, Huang SF, Mabuchi T and Tokumasu T 2023 Meet. Abstr. 2 322
[66] Marshak A H and Assaf D Ⅲ 1973 Solid-State Electron. 16 675
[67] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Comput. Mater. Sci. 68 314
[68] Wang Y, Shao W, Jin H, Wang Q, Xiao R and Li H 2025 Mater. Today Energy 49 101841
[69] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Comput. Mater. Sci. 68 314
[70] Shen J X, Horton M and Persson K A 2020 npj Comput. Mater. 6 161
[71] Urban A, Seo D H and Ceder G 2016 npj Comput. Mater. 2 16002
[72] Aydinol M K, Kohan A F, Ceder G, Cho K and Joannopoulos J 1997 Phys. Rev. B 56 1354
[73] Aydinol M K and Ceder G 1997 J. Electrochem. Soc. 144 3832
[74] Wolverton C and Zunger A 1998 Phys. Rev. B 57 2242
[75] Arroyo y de Dompablo M E, Van der Ven A and Ceder G 2002 Phys. Rev. B 66 064112
[76] Chien P, Wu X, Song B, Yang Z, Waters C K, Everett M S, Lin F, Du Z and Liu J 2021 Batteries Supercaps 4 1701
[77] Sinaga K P and Yang M S 2020 IEEE Access 8 80716
[78] Amigo N 2020 Model. Simul. Mater. Sci. Eng. 28 065009
[79] Nanda J, Remillard J, O’Neill A, Bernardi D, Ro T, Nietering K E, Go J and Miller T J 2011 Adv. Funct. Mater. 21 3282
[80] Hunter J D 2007 Comput. Sci. Eng. 9 90
[81] Fu F, Wang X, Zhang L, Yang Y, Chen J, Xu B, Ouyang C, Xu S, Dai F and E W 2023 Adv. Funct. Mater. 33 2303936
[82] Gjerding M, Skovhus T, Rasmussen A, Bertoldo F, Larsen A H, Mortensen J J and Thygesen K S 2021 Comput. Mater. Sci. 199 110731
[83] Krummenacher M, Gubler M, Finkler J A, Huber H, SommerJorgensen M and Goedecker S 2024 SoftwareX 25 101632
[84] Wang L, Gong X, Li Z, Xiao R and Li H 2025 arXiv 2508.06156
[85] Deng B, Zhong P, Jun K, Riebesell J, Han K, Bartel C J and Ceder G 2023 Nat. Mach. Intell. 5 1031
[86] Li W, Reimers J and Dahn J 1993 Solid State Ionics 67 123
[1] Reconfiguration of B-DNA structure induced by ethanol
Yue Huang(黄悦), Yipeng Chen(陈以鹏), Jing Li(李静), Rongri Tan(谈荣日), and Huanhuan Qiu(邱环环). Chin. Phys. B, 2025, 34(8): 088707.
[2] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[3] Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution: A machine learning interatomic potential-assisted investigation
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(2): 028201.
[4] Impact of mass concentration variations on plasma dynamics in a laser-ablated CH target
Hafiz Muhammad Siddique, Guannan Zheng(郑冠男), Tao Tao(陶弢), Xiao-Bao Jia(贾晓宝), and Jian Zheng(郑坚). Chin. Phys. B, 2025, 34(11): 115203.
[5] Stable nanobubbles on ordered water monolayer near ionic model surfaces
Luyao Huang(黄璐瑶), Cheng Ling(凌澄), Limin Zhou(周利民), Wenlong Liang(梁文龙), Yujie Huang(黄雨婕), Lijuan Zhang(张立娟), Phornphimon Maitarad, Dengsong Zhang(张登松), and Chunlei Wang(王春雷). Chin. Phys. B, 2025, 34(1): 014701.
[6] Effect of interlayer bonded bilayer graphene on friction
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良). Chin. Phys. B, 2024, 33(8): 086103.
[7] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[8] Thermal conductivity of GeTe crystals based on machine learning potentials
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Weifeng Li(李伟峰), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(4): 047402.
[9] Geometries and electronic structures of ZrnCu(n =2-12) clusters: A joint machine-learning potential density functional theory investigation
Yizhi Wang(王一志), Xiuhua Cui(崔秀花), Jing Liu(刘静), Qun Jing(井群), Haiming Duan(段海明), and Haibin Cao(曹海宾). Chin. Phys. B, 2024, 33(1): 016109.
[10] An artificial neural network potential for uranium metal at low pressures
Maosheng Hao(郝茂生) and Pengfei Guan(管鹏飞). Chin. Phys. B, 2023, 32(9): 098401.
[11] Stress effect on lattice thermal conductivity of anode material NiNb2O6 for lithium-ion batteries
Ao Chen(陈奥), Hua Tong(童话), Cheng-Wei Wu(吴成伟), Guofeng Xie(谢国锋), Zhong-Xiang Xie(谢忠祥), Chang-Qing Xiang(向长青), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2023, 32(5): 058201.
[12] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[13] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[14] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[15] Atomistic simulations of the lubricative mechanism of a nano-alkane lubricating film between two layers of Cu-Zn alloy
Jing Li(李京), Peng Zhu(朱鹏), Yuan-Yuan Sheng(盛圆圆), Lin Liu(刘麟), and Yong Luo(罗勇). Chin. Phys. B, 2021, 30(8): 080205.
No Suggested Reading articles found!