| COMPUTATIONAL PROGRAMS FOR PHYSICS |
Prev
Next
|
|
|
EDIS: A simulation software for dynamic ion intercalation/deintercalation processes in electrode materials |
| Liqi Wang(王力奇)1,2, Ruijuan Xiao(肖睿娟)1,2,†, and Hong Li(李泓)1,2 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
|
|
Abstract As the core determinant of lithium-ion battery performance, electrode materials play a crucial role in defining the battery’s capacity, cycling stability, and durability. During charging and discharging, electrode materials undergo complex ion intercalation and deintercalation processes, accompanied by defect formation and structural evolution. However, the microscopic mechanisms underlying processes such as cation disordering, lattice oxygen loss, and stage structure formation are still not fully understood. To address these challenges, we have developed the Electrode Dynamic Ion Intercalation/Deintercalation Simulator (EDIS), a software platform designed to simulate the dynamic processes of ion intercalation and deintercalation in electrode materials. Leveraging high-precision machine learning potentials, EDIS can efficiently model structural evolution and lithium-ion diffusion behavior under various states of charge and discharge, achieving accuracy approaching that of quantum mechanical methods in relevant chemical spaces. The software supports quantitative analysis of how variations in lithium-ion concentration and distribution affect lithium-ion transport properties, enables evaluation of the impact of structural defects, and allows for tracking of both structural evolution and transport characteristics during continuous cycling. EDIS is versatile and can be extended to sodium-ion batteries and related systems. By enabling in-depth analysis of these microscopic processes, EDIS provides a robust theoretical tool for mechanistic studies and the rational design of high-performance electrode materials for next-generation lithium-ion batteries.
|
Received: 14 August 2025
Revised: 02 October 2025
Accepted manuscript online: 09 October 2025
|
|
PACS:
|
82.47.Aa
|
(Lithium-ion batteries)
|
| |
82.20.Wt
|
(Computational modeling; simulation)
|
| |
82.20.Fd
|
(Collision theories; trajectory models)
|
| |
66.30.Pa
|
(Diffusion in nanoscale solids)
|
|
| Fund: This work was financially supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB1040300) and the National Natural Science Foundation of China (Grant No. 52172258). |
Corresponding Authors:
Ruijuan Xiao
E-mail: rjxiao@iphy.ac.cn
|
Cite this article:
Liqi Wang(王力奇), Ruijuan Xiao(肖睿娟), and Hong Li(李泓) EDIS: A simulation software for dynamic ion intercalation/deintercalation processes in electrode materials 2026 Chin. Phys. B 35 018201
|
[1] Sharma R, Kumar H, Kumar G, Sharma S, Aneja R, Sharma A K, Kumar R and Kumar P 2023 Chem. Eng. J. 468 143706 [2] Zhang Y, Wang J and Xue Z 2023 Adv. Funct. Mater. 34 2311925 [3] Lee J, Zhang Q, Kim J, Dupre N, Avdeev M, Jeong M, Yoon W, Gu L and Kang B 2019 Adv. Energy Mater. 10 1902231 [4] Xu J, Cai X, Cai S, Shao Y, Hu C, Lu S and Ding S 2023 Energy Environ. Mater. 6 e12450 [5] Chen G, Yan L, Luo H and Guo S 2016 Adv. Mater. 28 7580 [6] Huang Q, Zhang X, Wu F, Chen R and Li L 2023 Energy Storage Mater. 63 103050 [7] Ren P, Lu Z, Song M, Lee J, Zheng J, Sushko P V and Li D 2021 Adv. Energy Mater. 11 2003548 [8] Eto Y, So M, Yano T and Inoue G 2024 Meet. Abstr. MA2024-02 4416 [9] Luo B, Li H, Qi H, Liu Y, Zheng C, Du W, Zhang J and Chen L 2024 J. Energy Chem. 88 327 [10] Li J, Lin C, Weng M, Qiu Y, Chen P, Yang K, Huang W, Hong Y, Li J, Zhang M, Dong C, Zhao W, Xu Z, Wang X, Xu K, Sun J and Pan F 2021 Nat. Nanotechnol. 16 599 [11] Huang Y, Li P, Wei H, Luo Y H, Chen M, Liu S, Yin W, Zhang X H and Zheng J C 2025 ACS Nano 19 23719 [12] Zhang S, Yang Z, Lu Y, Xie W, Yan Z and Chen J 2024 Adv. Energy Mater. 36 2402068 [13] Zhao H, Li J, Zhao Q, Huang X, Jia S, Ma J and Ren Y 2024 Electrochem. Energy Rev. 7 11 [14] Huang Q, Zhang X, Wu F, Chen R and Li L 2023 Energy Storage Mater. 63 103050 [15] Xu X, Han X, Lu L, Wang F, Yang M, Liu X, Wu Y, Tang S, Hou Y, Hou J, Yu C and Ouyang M 2024 J. Power Sources 603 234445 [16] Zeng C, Liang J, Cui C, Zhai T and Li H 2022 Adv. Mater. 34 2200777 [17] Hapuarachchi S N S, Sun Z and Yan C 2018 Adv. Sustainable Syst. 2 1700182 [18] You S P 2012 Appl. Mech. Mater. 189 453 [19] Louie S G, Chan Y H, da Jornada F H, Li Z and Qiu D Y 2021 Nat. Mater. 20 728 [20] Pathrudkar S, Thiagarajan P, Agarwal S, Banerjee A S and Ghosh S 2024 npj Comput. Mater. 10 175 [21] Hoja J, Reilly A M and Tkatchenko A 2016 WIREs Comput. Mol. Sci. 7 e1294 [22] Wen D, Tucker V and Titus M S 2024 npj Comput. Mater. 10 210 [23] Chen Y, Zhang L, Wang H and E W 2020 J. Chem. Theory Comput. 17 170 [24] Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A 2018 Nature 559 547 [25] Prasnikar E, Ljubic M, Perdih A and Borisek J 2024 Artif. Intell. Rev. 57 102 [26] Zhou X Y, Wu H H, Zhang J, Ye S, Lookman T and Mao X 2025 J. Mater. Sci. Technol. 223 91 [27] Lee J, Ju S, Hwang S, You J, Jung J, Kang Y and Han S 2024 ACS Appl. Mater. Interfaces 16 46442 [28] Xie Y, Bu M, Zhang Y and Lu G 2023 J. Mol. Liq. 383 122112 [29] Pacini A, Ferrario M and Righi M C 2025 J. Chem. Theory Comput. 21 7102 [30] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, in’t Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171 [31] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012 [32] Wang Y, Shao W, Jin H, Wang Q, Xiao R and Li H 2025 Mater. Today Energy 49 101841 [33] Zhang B, Chen G, Liang Y and Xu P 2009 Solid State Ionics 180 398 [34] Yue P, Wang Z, Guo H, Xiong X and Li X 2013 Electrochim. Acta 92 1 [35] Nishida Y, Nakane K and Satoh T 1997 J. Power Sources 68 561 [36] Park G T, Kim S B, Namkoong B, Park N Y, Kim H, Yoon C S and Sun Y K 2023 Mater. Today 71 38 [37] Molenda J 2002 Solid State Ionics 146 73 [38] Ma Y, Teo J H, Kitsche D, Diemant T, Strauss F, Ma Y, Goonetilleke D, Janek J, Bianchini M and Brezesinski T 2021 ACS Energy Lett. 6 3020 [39] Li W, Currie J C and Wolstenholme J 1997 J. Power Sources 68 565 [40] Huang Q, Zhang X, Wu F, Chen R and Li L 2023 Energy Storage Mater. 63 103050 [41] Yamaki J, Makidera M, Kawamura T, Egashira M and Okada S 2006 J. Power Sources 153 245 [42] Gan Q, Qin N, Yuan H, Lu L, Xu Z and Lu Z 2023 EnergyChem 5 100103 [43] Konar S, Hausserman U and Svensson G 2015 Chem. Mater. 27 2566 [44] Tao L, Xia D, Sittisomwong P, Zhang H, Lai J, Hwang S, Li T, Ma B, Hu A, Min J, Hou D, Shah S R, Zhao K, Yang G, Zhou H, Li L, Bai P, Shi F and Lin F 2024 J. Am. Chem. Soc. 146 16764 [45] Papaderakis A A, Ejigu A, Yang J, Elgendy A, Radha B, Keerthi A, Juel A and Dryfe R A W 2023 J. Am. Chem. Soc. 145 8007 [46] Zhao Y, Zhang Y, Wang Y, Cao D, Sun X and Zhu H 2021 Carbon Energy 3 895 [47] Zhao W, Zhao C, Wu H, Li L and Zhang C 2024 J. Energy Storage 81 110409 [48] Chae S, Choi S, Kim N, Sung J and Cho J 2019 Angew. Chem. Int. Ed. 59 110 [49] Wang F, Yi J, Wang Y, Wang C, Wang J and Xia Y 2013 Adv. Energy Mater. 4 1300600 [50] Yao J, Zhu G, Huang J, Meng X, Hao M, Zhu S, Wu Z, Kong F, Zhou Y, Li Q and Diao G 2024 Molecules 29 4108 [51] Oka H, Makimura Y, Uyama T, Nonaka T, Kondo Y and Okuda C 2021 J. Power Sources 482 228926 [52] Kim H S, Hyun J C, Choi Y, Ha S, Kang D H, Heo Y H, Kwak J H, Yoon J, Lee J B, Kim J Y, Jin H J, Lee J, Lim H and Yun Y S 2024 Energy Storage Mater. 70 103514 [53] Kitamura T, Takai S, Yabutsuka T and Yao T 2020 J. Phys. Chem. Solids 142 109440 [54] Dimiev A M, Shukhina K, Behabtu N, Pasquali M and Tour J M 2019 J. Phys. Chem. C 123 19246 [55] Insinna T, Bassey E N, Marker K, Collauto A, Barra A L and Grey C P 2023 Chem. Mater. 35 5497 [56] Wu X, Song B, Chien P, Everett S M, Zhao K, Liu J and Du Z 2021 Adv. Sci. 8 2102318 [57] Insinna T, Barra A L and Grey C P 2025 Chem. Mater. 37 5167 [58] Li Y, Lu Y, Adelhelm P, Titirici M M and Hu Y S 2019 Chem. Soc. Rev. 48 4655 [59] Dresselhaus M S and Dresselhaus G 2002 Adv. Phys. 51 1 [60] Drue M, Seyring M and Rettenmayr M 2017 J. Power Sources 353 58 [61] Weng S, Wu S, Liu Z, Yang G, Liu X, Zhang X, Zhang C, Liu Q, Huang Y, Li Y, Ates M N, Su D, Gu L, Li H, Chen L, Xiao R, Wang Z and Wang X 2022 Carbon Energy 5 e224 [62] Wan W and Wang H 2015 Materials 8 6163 [63] Shen D, Ren Z, Wei S, Ji Y, Ma Y, Yang Y, Dong W and Tang S 2024 Phys. Chem. Chem. Phys. 26 28386 [64] Sonia F J, Aslam M and Mukhopadhyay A 2020 Carbon 156 130 [65] Zhang Z, Uene N, Huang SF, Mabuchi T and Tokumasu T 2023 Meet. Abstr. 2 322 [66] Marshak A H and Assaf D Ⅲ 1973 Solid-State Electron. 16 675 [67] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Comput. Mater. Sci. 68 314 [68] Wang Y, Shao W, Jin H, Wang Q, Xiao R and Li H 2025 Mater. Today Energy 49 101841 [69] Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A and Ceder G 2013 Comput. Mater. Sci. 68 314 [70] Shen J X, Horton M and Persson K A 2020 npj Comput. Mater. 6 161 [71] Urban A, Seo D H and Ceder G 2016 npj Comput. Mater. 2 16002 [72] Aydinol M K, Kohan A F, Ceder G, Cho K and Joannopoulos J 1997 Phys. Rev. B 56 1354 [73] Aydinol M K and Ceder G 1997 J. Electrochem. Soc. 144 3832 [74] Wolverton C and Zunger A 1998 Phys. Rev. B 57 2242 [75] Arroyo y de Dompablo M E, Van der Ven A and Ceder G 2002 Phys. Rev. B 66 064112 [76] Chien P, Wu X, Song B, Yang Z, Waters C K, Everett M S, Lin F, Du Z and Liu J 2021 Batteries Supercaps 4 1701 [77] Sinaga K P and Yang M S 2020 IEEE Access 8 80716 [78] Amigo N 2020 Model. Simul. Mater. Sci. Eng. 28 065009 [79] Nanda J, Remillard J, O’Neill A, Bernardi D, Ro T, Nietering K E, Go J and Miller T J 2011 Adv. Funct. Mater. 21 3282 [80] Hunter J D 2007 Comput. Sci. Eng. 9 90 [81] Fu F, Wang X, Zhang L, Yang Y, Chen J, Xu B, Ouyang C, Xu S, Dai F and E W 2023 Adv. Funct. Mater. 33 2303936 [82] Gjerding M, Skovhus T, Rasmussen A, Bertoldo F, Larsen A H, Mortensen J J and Thygesen K S 2021 Comput. Mater. Sci. 199 110731 [83] Krummenacher M, Gubler M, Finkler J A, Huber H, SommerJorgensen M and Goedecker S 2024 SoftwareX 25 101632 [84] Wang L, Gong X, Li Z, Xiao R and Li H 2025 arXiv 2508.06156 [85] Deng B, Zhong P, Jun K, Riebesell J, Han K, Bartel C J and Ceder G 2023 Nat. Mach. Intell. 5 1031 [86] Li W, Reimers J and Dahn J 1993 Solid State Ionics 67 123 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|