Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 016801    DOI: 10.1088/1674-1056/ae12e0
RAPID COMMUNICATION Prev   Next  

Uniform wafer-scale MOCVD homoepitaxy of β-Ga2O3 on 2-inch (010) substrates

Xuanze Zhou(周选择)1, Haozhong Wu(吴昊中)1, Yuanjie Ding(丁元杰)1, Ziyuan Wang(王子原)1, Zhiyu Zhou(周智宇)1, Ning Xia(夏宁)2, Song Zhang(张嵩)3,4,†, Guangwei Xu(徐光伟)1,‡, Hui Zhang(张辉)2, and Shibing Long(龙世兵)1
1 School of Microelectronics, University of Science and Technology of China, Hefei 230026, China;
2 Hangzhou Garen Semiconductor Company Limited, Hangzhou 311200, China;
3 The 46th Research Institute, China Electronics Technology Group Corporation, Tianjin 300220, China;
4 CETC Key Laboratory of Advanced Semiconductor Crystal Materials and Technologies, Tianjin 300220, China
Abstract  The (010) orientation of $\beta $-Ga$_2$O$_3$ is a highly promising platform for next-generation lateral power electronics due to its superior theoretical transport properties. However, progress has been impeded by the unavailability of large-area substrates, limiting studies to small-scale samples. Leveraging the recent emergence of 2-inch wafers, we report the first demonstration of homoepitaxial growth on a 2-inch, Fe-doped semi-insulating (010) $\beta $-Ga$_2$O$_3$ substrate by metal-organic chemical vapor deposition (MOCVD). A systematic, wafer-scale characterization reveals the successful growth of a high-quality epitaxial film. High-resolution x-ray diffraction shows an excellent crystalline structure, with a rocking curve full-width ranging from 21.0 arcsec to 103.0 arcsec. Atomic force microscopy confirms an atomically smooth surface with a root-mean-square roughness below 1.53 nm, displaying a distinct step-flow growth mode across the wafer. Furthermore, mercury-probe capacitance-voltage mapping indicates a well-controlled carrier concentration of $\sim 2\times 10^{18}$ cm$^{-3}$ with a RSD of 5.12%. This work provides the first comprehensive assessment of 2-inch (010) Ga$_2$O$_3$ epitaxial wafers, validating a critical material platform for the development and future manufacturing of high-performance power devices.
Keywords:  $\beta$-Ga$_{{2}}$O$_{{3}}$      metal-organic chemical vapor deposition (MOCVD)      wafer scale      uniformity  
Received:  19 September 2025      Revised:  13 October 2025      Accepted manuscript online:  14 October 2025
PACS:  68.35.bg (Semiconductors)  
  84.30.Jc (Power electronics; power supply circuits)  
  81.10.Bk (Growth from vapor)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. U23A20358, 62474170, 61925110, 62404214, and 62234007), the University of Science and Technology of China (USTC) Research Funds of the Double First-Class Initiative (Grant No. WK2100000055), the Project of the 46th Research Institute of CETC (Grant No. WDZC202446007), the JieBang Headed Project of Changsha City Hunan Province (Grant No. kq2301006), and the Opening Project and the Key Laboratory of Nano devices and Applications in Suzhou Institute of Nano-Tech and NanoBionics of CAS.
Corresponding Authors:  Song Zhang, Guangwei Xu     E-mail:  zhangsong02@163.com;xugw@ustc.edu.cn

Cite this article: 

Xuanze Zhou(周选择), Haozhong Wu(吴昊中), Yuanjie Ding(丁元杰), Ziyuan Wang(王子原), Zhiyu Zhou(周智宇), Ning Xia(夏宁), Song Zhang(张嵩), Guangwei Xu(徐光伟), Hui Zhang(张辉), and Shibing Long(龙世兵) Uniform wafer-scale MOCVD homoepitaxy of β-Ga2O3 on 2-inch (010) substrates 2026 Chin. Phys. B 35 016801

[1] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Appl. Phys. Lett. 100 013504
[2] Ma N, Tanen N, Verma A, Guo Z, Luo T, Xing H and Jena D 2016 Appl. Phys. Lett. 109 212101
[3] Baldini M, Galazka Z and Wagner G 2018 Mat. Sci. Semicon. Proc. 78 132
[4] Green A, Chabak K, Heller E, Fitch R, Baldini M, Fiedler A, Irmscher K, Wagner G, Galazka Z, Tetlak S, Crespo A, Leedy K and Jessen G 2016 IEEE Electron Device Lett. 37 902
[5] Konishi K, Goto K, Murakami H, Kumagai Y, Kuramata A, Yamakoshi S and Higashiwaki M 2017 Appl. Phys. Lett. 110 103506
[6] Zhou X, Ma Y, Xu G, Liu Q, Liu J, He Q, Zhao X and Long S 2022 Appl. Phys. Lett. 121 223501
[7] Zhang J, Dong P, Dang K, Zhang Y, Yan Q, Xiang H, Su J, Liu Z, Si M, Gao J, Kong M, Zhou H and Hao Y 2022 Nat. Commun. 13 3900
[8] Tomm Y, Reiche P, Klimm D and Fukuda T 2000 J. Cryst. Growth 220 510
[9] Galazka Z, Irmscher K, Uecker R, Bertram R, Pietsch M, Kwasniewski A, Naumann M, Schulz T, Schewski R, Klimm D and Bickermann M 2014 J. Cryst. Growth 404 184
[10] Galazka Z, Uecker R, Klimm D, Irmscher K, Naumann M, Pietsch M, Kwasniewski A, Bertram R, Ganschow S and Bickermann M 2017 ECS J. Solid State Sci. Technol. 6 Q3007
[11] Kuramata A, Koshi K, Watanabe S, Yamaoka Y, Masui T and Yamakoshi S 2016 Jpn. J. Appl. Phys. 55 1202
[12] Fu H, Chen H, Huang X, Baranowski I, Montes J, Yang T and Zhao Y 2018 IEEE Trans. Electron Devices 65 3507
[13] Mu W X, Jia Z T, Yin Y R, Hu Q Q, Li Y, Wu B Y, Zhang J and Tao X T 2017 J. Alloys Compd. 714 453
[14] Hoshikawa K, Kobayashi T and Ohba E 2020 J. Cryst. Growth 546 125778
[15] Xia N, Liu Y, Wu D, Li L, Ma K, Wang J, Zhang H and Yang D 2023 J. Alloys Compd. 935 168036
[16] Yan Y, Wu D, Xia N, Deng T, Zhang H and Yang D 2024 Appl. Phys. Lett. 124 122102
[17] Mauze A, Zhang Y, Itoh T, Ahmadi E and Speck J S 2020 Appl. Phys. Lett. 117 222102
[18] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 J. Cryst. Growth 378 591
[19] Liu X Z, Yue C, Xia C T and Zhang W L 2016 Chin. Phys. B 25 017201
[20] Nepal N, Scott Katzer D and Meyer D J 2019 Gallium Oxide pp. 31–46
[21] Murakami H, Nomura K, Goto K, Sasaki K, Kawara K, Thieu Q T, Togashi R, Kumagai Y, Higashiwaki M, Kuramata A, Yamakoshi S, Monemar B and Koukitu A 2015 Appl. Phys. Exp. 8 015503
[22] Higashiwaki M, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y, Monemar B, Koukitu A, Kuramata A and Yamakoshi S 2015 2015 73rd Annual Device Research Conference (DRC), pp. 29–30
[23] Higashiwaki M, Konishi K, Sasaki K, Goto K, Nomura K, Thieu Q T, Togashi R, Murakami H, Kumagai Y, Monemar B, Koukitu A, Kuramata A and Yamakoshi S 2016 Appl. Phys. Lett. 108 133503
[24] Goto K, Konishi K, Murakami H, Kumagai Y, Monemar B, Higashiwaki M, Kuramata A and Yamakoshi S 2018 Thin Solid Films 666 182
[25] Tadjer M J, Koehler A D, Freitas J A, Gallagher J C, Specht M C, Glaser E R, Hobart K D, Anderson T J, Kub F J, Thieu Q T, Sasaki K, Wakimoto D, Goto K, Watanabe S and Kuramata A 2018 Appl. Phys. Lett. 113 192102
[26] Hellwig M, Xu K, Barreca D, Gasparotto A, Niermann B, Winter J, Becker H W, Rogalla D, Fischer R A and Devi A 2009 Ecs Transactions 25 617
[27] Du X, Mi W, Luan C, Li Z, Xia C and Ma J 2014 J. Cryst. Growth 404 75
[28] Gogova D, Wagner G, Baldini M, Schmidbauer M, Irmscher K, Schewski R, Galazka Z, Albrecht M and Fornari R 2014 J. Cryst. Growth 401 665
[29] Wagner G, Baldini M, Gogova D, Schmidbauer M, Schewski R, Albrecht M, Galazka Z, Klimm D and Fornari R 2014 Phys. status solidi (A) 211 27
[30] Du X, Li Z, Luan C, Wang W, Wang M, Feng X, Xiao H and Ma J 2015 J. Mater. Sci. 50 3252
[31] Alema F, Zhang Y W, Osinsky A, Valente N, Mauze A, Itoh T and Speck J S 2019 APL Mater. 7 121110
[32] Feng Z X, Bhuiyan A F M A U, Karim M R and Zhao H P 2019 Appl. Phys. Lett. 114 250601
[33] Theodoropoulos C, Ingle N K, Mountziaris T J, Chen Z Y, Liu P L, Kioseoglou G and Petrou A 1995 J. Electrochem. Soc. 142 2086
[1] Impact of free electron laser coherence on imaging quality
Shuang Wei(魏爽), Shuang Gong(龚爽), Yang Bu(步扬), and Zi-Jian Song(宋子健). Chin. Phys. B, 2025, 34(5): 054201.
[2] Harmonic balance simulation of the influence of component uniformity and reliability on the performance of a Josephson traveling wave parametric amplifier
Yuzhen Zheng(郑煜臻), Kanglin Xiong(熊康林), Jiagui Feng(冯加贵), and Hui Yang(杨辉). Chin. Phys. B, 2024, 33(4): 040401.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[5] Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas
Wei Liu(刘巍), Chan Xue(薛婵), Fei Gao(高飞), Yong-Xin Liu(刘永新), You-Nian Wang(王友年), and Yong-Tao Zhao(赵永涛). Chin. Phys. B, 2021, 30(6): 065202.
[6] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[7] New embedded DDSCR structure with high holding voltage and high robustness for 12-V applications
Jie-Yu Li(李婕妤), Yang Wang(汪洋)†, Dan-Dan Jia(夹丹丹), Wei-Peng Wei(魏伟鹏), and Peng Dong(董鹏). Chin. Phys. B, 2020, 29(10): 108501.
[8] First polar direct-drive exploding-pusher target experiments on the ShenGuang laser facility
Bo Yu(余波), Jiamin Yang(杨家敏), Tianxuan Huang(黄天晅), Peng Wang(王鹏), Wanli Shang(尚万里), Xiumei Qiao(乔秀梅), Xuewei Deng(邓学伟), Zhanwen Zhang(张占文), Zifeng Song(宋仔峰), Qi Tang(唐琦), Xiaoshi Peng(彭晓世), Jiabin Chen(陈家斌), Yulong Li(理玉龙), Wei Jiang(蒋炜), Yudong Pu(蒲昱东), Ji Yan(晏骥), Zhongjing Chen(陈忠靖), Yunsong Dong(董云松), Wudi Zheng(郑无敌), Feng Wang(王峰), Shaoen Jiang(江少恩), Yongkun Ding(丁永坤), Jian Zheng(郑坚). Chin. Phys. B, 2019, 28(9): 095203.
[9] Uniformity principle of temperature difference field in heat transfer optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2019, 28(6): 064402.
[10] High uniformity and forming-free ZnO-based transparent RRAM with HfOx inserting layer
Shi-Jian Wu(吴仕剑), Fang Wang(王芳), Zhi-Chao Zhang(张志超), Yi Li(李毅), Ye-Mei Han(韩叶梅), Zheng-Chun Yang(杨正春), Jin-Shi Zhao(赵金石), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2018, 27(8): 087701.
[11] Influence of dielectric materials on uniformity of large-area capacitively coupled plasmas for N2/Ar discharges
Ying-Shuang Liang(梁英爽), Yu-Ru Zhang(张钰如), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(10): 105206.
[12] Resistive switching characteristic and uniformity of low-power HfOx-based resistive random access memory with the BN insertion layer
Shuai Su(苏帅), Xiao-Chuan Jian(鉴肖川), Fang Wang(王芳), Ye-Mei Han(韩叶梅), Yu-Xian Tian(田雨仙), Xiao-Yang Wang(王晓旸), Hong-Zhi Zhang(张宏智), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2016, 25(10): 107302.
[13] Hetero-epitaxy of Lg=0.13-μm metamorphic AlInAs/GaInAs HEMT on Si substrates by MOCVD for logic applications
Huang Jie (黄杰), Li Ming (黎明), Zhao Qian (赵倩), Gu Wen-Wen (顾雯雯), Lau Kei-May (刘纪美). Chin. Phys. B, 2015, 24(8): 087305.
[14] Three-dimensional PIC/MCC simulation of electron deposition in JAEA 10 A ion sources
Yang Chao (杨超), Yin Mao-Wei (印茂伟), Shang Li-Ping (尚丽平), Wei Ai-Yong (韦爱勇). Chin. Phys. B, 2014, 23(9): 095201.
[15] Study of a millimeter-wave squint indirect holographic algorithm suitable for imaging with large field-of-view
Gao Xiang (高翔), Li Chao (李超), Fang Guang-You (方广有). Chin. Phys. B, 2014, 23(2): 028401.
No Suggested Reading articles found!