Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 018701    DOI: 10.1088/1674-1056/ae1726
SPECIAL TOPIC — AI + Physical Science Prev   Next  

Revealing the dynamic responses of Pb under shock loading based on DFT-accuracy machine learning potential

Enze Hou(侯恩则)1,2, Xiaoyang Wang(王啸洋)3, and Han Wang(王涵)3,4,†
1 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
2 Graduate School of China Academy of Engineering Physics, Beijing 100088, China;
3 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
4 HEDPS, CAPT, College of Engineering and School of Physics, Peking University, Beijing 100871, China
Abstract  Lead (Pb) is a typical low-melting-point ductile metal and serves as an important model material in the study of dynamic responses. Under shock-wave loading, its dynamic mechanical behavior comprises two key phenomena: plastic deformation and shock-induced phase transitions. The underlying mechanisms of these processes are still poorly understood. Revealing these mechanisms remains challenging for experimental approaches. Non-equilibrium molecular dynamics (NEMD) simulations are an alternative theoretical tool for studying dynamic responses, as they capture atomic-scale mechanisms such as defect evolution and deformation pathways. However, due to the limited accuracy of empirical interatomic potentials, the reliability of previous NEMD studies has been questioned. Using our newly developed machine learning potential for Pb-Sn alloys, we revisited the microstructural evolution in response to shock loading under various shock orientations. The results reveal that shock loading along the [001] orientation of Pb exhibits a fast, reversible, and massive phase transition and stacking-fault evolution. The behavior of Pb differs from previous studies by the absence of twinning during plastic deformation. Loading along the [011] orientation leads to slow, irreversible plastic deformation, and a localized FCC-BCC phase transition in the Pitsch orientation relationship. This study provides crucial theoretical insights into the dynamic mechanical response of Pb, offering a theoretical input for understanding the microstructure-performance relationship under extreme conditions.
Keywords:  interatomic potentials      molecular dynamics      shock impacts      machine learning  
Received:  31 July 2025      Revised:  22 October 2025      Accepted manuscript online:  24 October 2025
PACS:  87.10.Tf (Molecular dynamics simulation)  
  34.20.Cf (Interatomic potentials and forces)  
  62.50.Ef (Shock wave effects in solids and liquids)  
  84.35.+i (Neural networks)  
Fund: This project was supported by the National Key R&D Program of China (Grant No. 2022YFA1004300) and the National Natural Science Foundation of China (Grant No. 12404004).
Corresponding Authors:  Han Wang     E-mail:  wang_han@iapcm.ac.cn

Cite this article: 

Enze Hou(侯恩则), Xiaoyang Wang(王啸洋), and Han Wang(王涵) Revealing the dynamic responses of Pb under shock loading based on DFT-accuracy machine learning potential 2026 Chin. Phys. B 35 018701

[1] Takahashi T, Mao H K and Bassett W 1969 Science 165 1352
[2] Kuznetsov A, Dmitriev V, Dubrovinsky L, Prakapenka V and Weber H P 2002 Solid State Commun. 122 125
[3] Sharma S M, Turneaure S J, Winey J M and Gupta Y M 2020 Phys. Rev. Lett. 124 235701
[4] Krygier A, Powell P D, McNaney J M, Huntington C M, Prisbrey S T, Remington B A, Rudd R E, Swift D C, Wehrenberg C E, Arsenlis A, Park H S, Graham P, Gumbrell E, Hill M P, Comley A J and Rothman S D 2019 Phys. Rev. Lett. 123 205701
[5] Chen Y, Ren G, Tang T, Li Q and Hu H 2016 Shock Waves 26 221
[6] Antipov M V, Arinin V A, Georgievskaya A B, et al. 2017 J. Dyn. Behav. Mater. 3 300
[7] Xiang M, Hu H and Chen J 2013 J. Appl. Phys. 113 144312
[8] Xiang M Z, Hu H B and Chen J 2013 Key Eng. Mater. 577–578 613
[9] Xiang M, Hu H, Chen J and Long Y 2013 Model. Simul. Mater. Sci. Eng. 21 055005
[10] Wang K, Zhang F, He A and Wang P 2019 J. Appl. Phys. 125 155107
[11] Mayer A E and Mayer P N 2020 Int. J. Fract. 222 171
[12] Li G, Wang Y, Wang K, Xiang M and Chen J 2019 J. Appl. Phys. 126 075902
[13] Wang K, Zhu W, Xiang M, Xu Y, Li G and Chen J 2018 Model. Simul. Mater. Sci. Eng. 27 015001
[14] Liu A Y, Garca A, Cohen M L, Godwal B K and Jeanloz R 1991 Phys. Rev. B 43 1795
[15] Cui S, Cai L, Feng W, Hu H, Wang C and Wang Y 2008 Phys. Status Solidi B 245 53
[16] Cricchio F, Belonoshko A B, Burakovsky L, Preston D L and Ahuja R 2006 Phys. Rev. B 73 140103
[17] Vohra Y K and Ruoff A L 1990 Phys. Rev. B 42 8651
[18] Yu D and Scheffler M 2004 Phys. Rev. B 70 155417
[19] Bombis C, Emundts A, Nowicki M and Bonzel H 2002 Surf. Sci. 511 83
[20] Thompson A P, Swiler L P, Trott C R, Foiles S M and Tucker G J 2015 J. Comput. Phys. 285 316
[21] Shapeev A V 2016 Multiscale Model Sim. 14 1153
[22] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[23] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[24] Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T and Müller K R 2017 Sci. Adv. 3 e1603015
[25] Schütt K, Kindermans P J, Sauceda H E, Chmiela S, Tkatchenko A and Müller K R 2017 Advances in Neural Information Processing Systems 30, December 4–9, 2017, Long Beach, CA, USA, pp. 992
[26] Smith J S, Isayev O and Roitberg A E 2017 Chem. Sci. 8 3192
[27] Han J, Zhang L, Car R and E W 2018 Commun. Comput. Phys. 23 629
[28] Zhang L, Han J,Wang H, SaidiWA, Car R and E W 2018 Advances in Neural Information Processing Systems 31 (NeurIPS 2018), December 3–8, 2018, Montréal, Canada
[29] WoodMA and Thompson A P 2017 arXiv:1702.07042[physics.compph]
[30] Kostiuchenko T S, Shapeev A V and Novikov I S 2024 Chin. Phys. Lett. 41 066101
[31] Zhao K J and Song Z G 2025 Chin. Phys. B 34 066101
[32] Xiong J H, Qi Z J, Liang K, Sun X, Sun Z P, Wang Q J, Chen L W, Wu G and Shen W 2023 Chin. Phys. B 32 128101
[33] Yang F, Zeng Q, Chen B, Kang D, Zhang S,Wu J, Yu X and Dai J 2022 Chin. Phys. Lett. 39 116301
[34] Hao M and Guan P 2023 Chin. Phys. B 32 098401
[35] Li B, Yang Y, Fan Y, Zhu C, Liu S and Shi Z 2023 Chin. Phys. Lett. 40 097402
[36] Zhang J, Chen G, Zhang C, Xu Y and Wang X 2025 Chin. Phys. Lett. 42 056101
[37] Zhuang L, Ye Q, Pan D and Li X Z 2020 Chin. Phys. Lett. 37 043101
[38] Qiu R, Zeng Q, Wang H, Kang D, Yu X and Dai J 2023 Chin. Phys. Lett. 40 116301
[39] Chang X, Kang D, Chen B and Dai J 2025 Chin. Phys. Lett. 42 053704
[40] Gao T, Zeng Q, Chen B, Kang D and Dai J 2024 Acta Metall. Sinica 60 1439 (in Chinese)
[41] Zeng Q, Chen B, Kang D and Dai J 2023 Acta Phys. Sin. 72 187102 (in Chinese)
[42] Liu L, Shi J, Song D and Miao C 2025 Phys. Chem. Chem. Phys. 27 11684
[43] D’Souza J X, Hu S X, Mihaylov D I, Karasiev V V, Goncharov V N and Zhang S 2025 Phys. Plasma 32 042701
[44] Pan S, Shi J, Liang Z, Liu C, Wang J, Wang Y, Wang H T, Xing D and Sun J 2024 Phys. Rev. B 110 224101
[45] Zeng X, Xiao S, Chen Y, Li X, Wang K, Deng H, Zhu W and Hu W 2025 Phys. B 715 417499
[46] Hou E, Wang X and Wang H AIS Square Datasets[2023-09]
[47] Mo P, Li C, Zhao D, Zhang Y, Shi M, Li J and Liu J 2022 npj Comput. Mater. 8 107
[48] Wang H, Zhang L, Han J and E W 2018 Comput. Phys. Commun. 228 178
[49] Chen M, Guo G and He L 2010 J. Phys. Condens. Matter 22 445501
[50] Li P, Liu X, Chen M, Lin P, Ren X, Lin L, Yang C and He L 2016 Comput. Mater. Sci 112 503
[51] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[52] Hamann D R 2013 Phys. Rev. B 88 085117
[53] van Setten M, Giantomassi M, Bousquet E, Verstraete M, Hamann D, Gonze X and Rignanese G M 2018 Comput. Phys. Commun. 226 39
[54] Tantardini C, Iliaš M, Giantomassi M, Kvashnin A G, Pershina V and Gonze X 2024 Comput. Phys. Commun. 295 109002
[55] Marsh S P 1980 LASL Shock Hugoniot Data Vol. 5 (Berkeley: University of California Press)
[56] Li W, Hahn E N, Yao X, Germann T C and Zhang X 2019 Acta Mater. 167 51
[57] Plimpton S 1995 J. Comput. Phys. 117 1
[58] Larsen P M, Schmidt S and Schiøtz J 2016 Model. Simul. Mater. Sci. Eng. 24 055007
[59] Stukowski A 2009 Model. Simul. Mater. Sci. Eng. 18 015012
[60] Alippi P, Marcus P and Scheffler M 1997 Phys. Rev. Lett. 78 3892
[61] Waitz T and Karnthaler H 1997 Acta Mater. 45 837
[62] Pitsch W 1959 Philos. Mag. 4 577
[1] EDIS: A simulation software for dynamic ion intercalation/deintercalation processes in electrode materials
Liqi Wang(王力奇), Ruijuan Xiao(肖睿娟), and Hong Li(李泓). Chin. Phys. B, 2026, 35(1): 018201.
[2] Yielding transition under oscillatory shear in metallic glasses
Nannan Ren(任楠楠), Tiantian Meng(孟天天), Hui Huang(黄慧), Qunshuang Ma(马群双), Jun Fang(房军), Qin Li(李勤), and Weihuo Li(李维火). Chin. Phys. B, 2026, 35(1): 016103.
[3] Machine learning-assisted optimization of MTO basis sets
Zhiqiang Li(李志强), and Lei Wang(王蕾). Chin. Phys. B, 2026, 35(1): 016301.
[4] Review of machine learning tight-binding models: Route to accurate and scalable electronic simulations
Jijie Zou(邹暨捷), Zhanghao Zhouyin(周寅张皓), Shishir Kumar Pandey, and Qiangqiang Gu(顾强强). Chin. Phys. B, 2026, 35(1): 017101.
[5] Effect of impact velocity on spall behaviors of nanocrystalline iron: Molecular dynamics study
Li-Qiong Chen(陈利琼), Kui Zhao(赵奎), Kai Zhang(张开), Ze-Zhi Wen(文泽智), Hou-Jin Mei(梅后金), and Zhen-Bao Xiong(熊珍宝). Chin. Phys. B, 2025, 34(9): 096201.
[6] Machine learning approach to reconstruct dephasing time from solid HHG spectra
Jiahao Liu(刘佳豪), Xi Zhao(赵曦), Jun Wang(王俊), and Songbin Zhang(张松斌). Chin. Phys. B, 2025, 34(9): 097804.
[7] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[8] Solubility parameters of supercritical CO2 and CO2+H2O fluids: A molecular dynamics study
Junliang Wang(王军良), Jiaqing Fang(方佳清), Ting Wu(吴婷), Quanyuan Wang(王泉源), Zhiyan Pan(潘志彦), Mian Hu(胡沔), and Min Wu(吴旻). Chin. Phys. B, 2025, 34(8): 088201.
[9] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[10] Molecular simulation study on phase separation of immunoglobulin G
Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(8): 088701.
[11] Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect
Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2025, 34(8): 087104.
[12] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[13] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[14] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[15] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
No Suggested Reading articles found!