Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 118201    DOI: 10.1088/1674-1056/ae0bfe
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4

Peiru Yang(杨佩如), Xinchun Du(杜新春), Jie Li(李杰)†, and Siqi Shi(施思齐)‡
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
Abstract  LiFePO$_{4}$ has normal olivine-structured ($\alpha $-LFP) and high pressure ($\beta $-LFP) phases, with the former being one of the cathode materials for commercial Li-ion batteries. Despite extensive focus on the respective electrochemical properties of the two phases, there is a lack of comparative studies on their electronic and magnetic properties, and the origin of the structural phase transition remains unclear. By combining first-principles calculations with molecular dynamics simulations, we find that the anisotropic compression of Li-O bonds drives the structural phase transition from $\alpha $-LFP to $\beta $-LFP at a critical pressure of 20 GPa, while $\beta $-LFP undergoes a transition from semiconductor to metal due to Fe$^{3+}$ generated during delithiation. Their antiferromagnetic (AFM) ground states are predicted to arise from the negative magnetic exchange interactions between nearest and next-nearest neighbor sites, with the corresponding Néel temperature showing significant enhancement under pressure. Furthermore, compared with $\alpha $-LFP, $\beta $-LFP shows increases in bulk, shear, and Young's moduli of 8%, 13%, and 12%, respectively. These findings enrich the physical property data of LiFePO$_{4}$ phase compounds, providing knowledge for expanding the application scenarios of the $\alpha $-LFP phase under special operating conditions such as high pressure.
Keywords:  lithium-ion battery      LiFePO$_{4}$      structural phase transition      first-principles calculations  
Received:  16 July 2025      Revised:  15 September 2025      Accepted manuscript online:  26 September 2025
PACS:  82.47.Aa (Lithium-ion batteries)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12304089) and the start-up foundation from Shanghai University. Calculations were partially performed on computers at the Shanghai Technical Service Center for Scientific and Engineering Computing, Shanghai University.
Corresponding Authors:  Jie Li, Siqi Shi     E-mail:  lij@shu.edu.cn;sqshi@shu.edu.cn

Cite this article: 

Peiru Yang(杨佩如), Xinchun Du(杜新春), Jie Li(李杰), and Siqi Shi(施思齐) Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4 2025 Chin. Phys. B 34 118201

[1] Albertus P, Anandan V, Ban C, et al. 2021 ACS Energy Lett. 6 1399
[2] Tao R, Gu Y, Du Z, Lyu X and Li J 2025 Nat. Rev. Clean Technol. 1 116
[3] Li L,Wu L,Wu F, Song S, Zhang X, Fu C, Yuan D and Xiang Y 2017 J. Electrochem. Soc. 164 A2138
[4] He J, Meng J and Huang Y 2023 J. Power Sources 570 232965
[5] Padhi A K, Nanjundaswamy K S and Goodenough J B 1997 J. Electrochem. Soc. 144 1188
[6] Yamada A, Chung S C and Hinokuma K 2001 J. Electrochem. Soc. 148 A224
[7] Liu H, Strobridge F C, Borkiewicz O J,Wiaderek K M, Chapman KW, Chupas P J and Grey C P 2014 Science 344 1252817
[8] Wang W, Wang R, Zhan R, Du J, Chen Z, Feng R, Tan Y, Hu Y, Ou Y, Yuan Y, Li C, Xiao Y and Sun Y 2023 Nano Lett. 23 7485
[9] Zhao X,Wang X, Guo J, Gu Z, Cao J, Yang J, Lu F, Zhang J andWu X 2024 Adv. Mater. 36 2308927
[10] Cao M, Liu Z, Zhang X, Yang L, Xu S, Weng S, Zhang S, Li X, Li Y, Liu T, Gao Y, Wang X, Wang Z and Chen L 2023 Adv. Funct. Mater. 33 2210032
[11] Chung S, Bloking J and Chiang Y 2002 Nat. Mater. 1 123
[12] Ouyang C, Wang D, Shi S, Wang Z, Li H, Huang X and Chen L 2006 Chin. Phys. Lett. 23 61
[13] Shi S, Liu L, Ouyang C, Wang D, Wang Z, Chen L and Huang X 2003 Phys. Rev. B 68 195108
[14] Li H, Wang Z, Chen L and Huang X 2009 Adv. Mater. 21 4593
[15] Li Z, Zhang D and Yang F 2009 J. Mater. Sci. 44 2435
[16] Andersson A S and Thomas J O 2001 J. Power Sources 97 498
[17] Gai J, Yang J, Yang W, Li Q, Wu X and Li H 2023 Chin. Phys. Lett. 40 086101
[18] Li Y, Sun S, He Y and Li H 2022 Chin. Phys. Lett. 39 026101
[19] Du J, Tao H, Chen Y, Yuan X, Lian C and Liu H 2021 Chin. Phys. Lett. 38 118201
[20] Axmann P, Stinner C, Wohlfahrt-Mehrens M, Mauger A, Gendron F and Julien C 2009 Chem. Mater. 21 1636
[21] García-Moreno O, Alvarez-Vega M, García-Alvarado F, García-Jaca J, Gallardo-Amores J, Sanjuán M and Amador U 2001 Chem. Mater. 13 1570
[22] Lin H and Zeng Z 2011 IEEE Trans. Magn. 47 3817
[23] Dong H, Guo H, He Y, Gao J, HanW, Lu X, Yan S, Yang K, Li H, Chen D and Li H 2017 Solid State Ion. 301 133
[24] Wu C, Huang W, Liu L, Wang H, Zeng Y, Xie J, Jin C and Zhang Z 2016 CrystEngComm 18 7707
[25] Guo H, Song X, Zhuo Z, Hu J, Liu T, Duan Y, Zheng J, Chen Z, Yang W, Amine K and Pan F 2016 Nano Lett. 16 601
[26] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[27] Kresse G and Furthmüler J 1996 Phys. Rev. B 54 11169
[28] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[29] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[30] Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196
[31] Ouyang C, Shi S, Wang Z, Huang X and Chen L 2004 Phys. Rev. B 69 104303
[32] Pei B, Yao H, Zhang W and Yang Z 2012 J. Power Sources 220 317
[33] Maxisch T and Ceder G 2006 Phys. Rev. B 73 174112
[34] Zhang Z, Ma H and Wan B 2024 JOM 77 2943
[35] Zeng G, Caputo R, Carriazo D, Luo L and Niederberger M 2013 Chem. Mater. 25 3399
[36] Fisher C A J, Hart Prieto V M and Islam M S 2008 Chem. Mater. 20 5907
[37] Adams S and Prasada Rao R 2011 Solid State Ion. 184 57
[38] Santoro R and Newnham R 1967 Acta Cryst. 22 344
[39] Li J, Garlea V, Zarestky J and Vaknin D 2006 Phys. Rev. B 73 0234410
[40] Werner J, Neef C, Koo C, Zvyagin S, Ponomaryov A and Klingeler R 2020 Phys. Rev. Mater. 4 115403
[41] Shi S, Ouyang C, Xiong Z, Liu L, Wang Z, Li H, Wang D, Chen L and Huang X 2005 Phys. Rev. B 71 144404
[42] Zhang Y, Alarco J, Best A, Snook G, Talbot P and Nerkar J 2019 RSC Adv. 9 1134
[1] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[2] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[3] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[4] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[5] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[6] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[7] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[8] Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution: A machine learning interatomic potential-assisted investigation
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(2): 028201.
[9] Stable structures and superconductivity of Ca-As-H system under high pressure
Lanci Guo(郭兰慈), Qiyue Zhang(张启悦), Yuechen Guo(郭悦晨), Gang Chen(陈刚), and Jurong Zhang(张车荣). Chin. Phys. B, 2025, 34(11): 117401.
[10] Swarm-intelligent predictions of high-TC polymorphs in monolayer CrI3 above 77 K
Ying Luo(罗颖), Shuangyi Xu(许双旖), Yanan Wang(王亚南), and Yunwei Zhang(张云蔚). Chin. Phys. B, 2025, 34(11): 117105.
[11] Emergent ferroelectricity in the two-dimensional Janus MoSSe monolayer driven by nondegenerate phonon instability
Zhi-Long Cao(曹智龙), Chen Cao(曹琛), Jia-Jun Xu(徐佳俊), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振). Chin. Phys. B, 2025, 34(11): 117305.
[12] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[13] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[14] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[15] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
No Suggested Reading articles found!