Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100308    DOI: 10.1088/1674-1056/adec5c
RAPID COMMUNICATION Prev   Next  

Optimal parameter combinations of entanglement in the general Heisenberg model

Da-Chuang Li(李大创)1,2, Wei-Wei Pan(潘维韦)1, Xing-Dong Zhao(赵兴东)3, and Xiao-Lan Zong(宗晓岚)1,†
1 School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China;
2 Key Laboratory of Quantum Information and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China;
3 School of Physics, Henan Normal University, Xinxiang 453007, China
Abstract  Thermal entanglement, as influenced by interaction parameters, is investigated within the general Heisenberg $XYZ$ model. We calculate the relationship between entanglement and the system interaction parameters, including spin-spin interaction parameters (SSIPs) and spin-orbit interaction parameters (SOIPs). By considering various parameter orientations, we identify four optimal combinations of the SSIPs and find that the optimal vector of the spin-orbit interaction aligns with the coordinate axis corresponding to the maximal SSIP component. Furthermore, we obtain three effective optimal combinations of the SOIPs corresponding to the optimal SSIPs, which can maximize the system entanglement when the parameters are tuned accordingly. To demonstrate the feasibility of our results under realistic experimental conditions, we propose an optical lattice scheme with tunable parameters.
Keywords:  entanglement      Heisenberg model      Dzyaloshinskii-Moriya interaction  
Received:  22 April 2025      Revised:  16 June 2025      Accepted manuscript online:  07 July 2025
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Bg (Entanglement production and manipulation)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11204061, 12204142, and 11904071), the Anhui Provincial Key Research and Development Project (Grant No. 2022b13020002), and the Outstanding Young Talents in College of Anhui Province (Grant No. gxyq2022059).
Corresponding Authors:  Xiao-Lan Zong     E-mail:  xlzong725@foxmail.com

Cite this article: 

Da-Chuang Li(李大创), Wei-Wei Pan(潘维韦), Xing-Dong Zhao(赵兴东), and Xiao-Lan Zong(宗晓岚) Optimal parameter combinations of entanglement in the general Heisenberg model 2025 Chin. Phys. B 34 100308

[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] NeilsenMA and Chuang I L 2000 Quantum computation and quantum information (UK: Cambridge University Press) p. 4 (in Chinese)
[4] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys 81 865
[5] Zou H Y and Wang W 2023 Chin. Phys. Lett. 40 057501
[6] Qian X J and Qin M P 2023 Chin. Phys. Lett. 40 057102
[7] Lin H Y, He R Q, Guo Y B and Lu Z Y 2024 Chin. Phys. B 33 117504
[8] Kane B E 1998 Nature 393 133
[9] Zad H A, Zoshki A, Ananikian N, JascurMand Michal J 2022 J. Magn. Magn. Mater. 559 169533
[10] Sørensen A and Klaus M 1999 Phys. Rev. Lett. 83 2274
[11] Zhang D W, Chen J P, Shan C J, Wang Z D and Zhu S L 2013 Phys. Rev. A 88 013612
[12] Natu S S, Pixley J H and Das Sarma S 2015 Phys. Rev. A 91 043620
[13] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[14] Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
[15] Bodoky F and Blaauboer M 2007 Phys. Rev. A 76 052309
[16] Trauzettel B, Bulaev D V, Loss D and Burkard G 2007 Nat. Phys. 3 192
[17] Mosshammer K and Brandes T 2014 Phys. Rev. B 90 134305
[18] Van Diepen C J, Hsiao T K, Mukhopadhyay U, Reichl C, Wegscheider W and Vandersypen L M K 2021 Phys. Rev. X 11 041025
[19] Senthil T, Marston J B and Fisher M P A 1999 Phys. Rev. B 60 4245
[20] Nishiyama M, Inada Y and Zheng G Q 2007 Phys. Rev. Lett. 98 047002
[21] Schecter M, Flensberg K, Christensen M H, Andersen B M and Paaske J 2016 Phys. Rev. B 93 140503
[22] Wang D, Wiebe J, Zhong R, Gu G and Wiesendanger R 2021 Phys. Rev. Lett. 126 076802
[23] Asoudeh M and Karimipour V 2005 Phys. Rev. A 71 022308
[24] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[25] Kheirandish F, Akhtarshenas S J and Mohammadi H 2008 Phys. Rev. A 77 042309
[26] Mohamed A A, Rahman A and Aldosari F M 2023 Alex. Eng. J. 66 861
[27] Li Q H, Miao C Z and Xu Y L 2023 J. Supercond. Nov. Magn. 36 957
[28] Amazioug M and Daoud M 2024 Phys. Lett. A 493 129245
[29] Bouafia Z, Oumennana M, Mansour M and Ouchni F 2024 Appl. Phys. B 130 94
[30] Li D C and Cao Z L 2008 J. Phys.: Condens. Matter 20 325229
[31] Li D C and Cao Z L 2009 Opt. Commun 282 1226
[32] Li D C, Li X M, Li H, Tao R, Yang M and Cao Z L 2015 Chin. Phys. Lett. 32 050302
[33] Li D C, Wang X P, Li H, Li X M, Yang M and Cao Z L 2016 Chin. Phys. Lett. 33 050301
[34] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[35] Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241
[36] Moriya T 1960 Phys. Rev. 117 635
[37] Moriya T 1960 Phys. Rev. Lett. 4 228
[38] Moriya T 1960 Phys. Rev. 120 91
[39] Zhang W P, Pu H, Search C and Meystre P 2002 Phys. Rev. Lett. 88 060401
[40] Zhao X D, Xie Z W and Zhang W P 2007 Phys. Rev. B 76 214408
[41] Zhao X D, Zhao X, Jing H, Zhou L and Zhang W P 2013 Phys. Rev. A 87 053627
[42] Gross K, Search C P, Pu H, Zhang W P and Meystre P 2002 Phys. Rev. A 66 033603
[43] Pu H, Zhang W P and Meystre P 2001 Phys. Rev. Lett. 87 140405
[44] Ederer C and Spaldin N A 2006 Phys. Rev. B 74 020401
[45] Fujisawa M, Shiraki K, Okubo S, Ohta H, Yoshida M, Tanaka H and Sakai T 2009 Phys. Rev. B 80 012408
[46] Rigol M and Singh R R P 2007 Phys. Rev. B 76 184403
[47] Rigol M and Singh R R P 2007 Phys. Rev. Lett. 98 207204
[48] Chutia S, Friesen M and Joynt R 2006 Phys. Rev. B 73 241304
[49] Vedmedenko E Y, Udvardi L, Weinberger P and Wiesendanger R 2007 Phys. Rev. B 75 104431
[1] Quantum-enhanced time-of-arrival measuring method based on partially entangled state
Peng-Xian Li(李芃鲜), Lu-Ping Xu(许录平), Gui-Ting Hu(胡桂廷), and Wen-Long Gao(高文珑). Chin. Phys. B, 2025, 34(7): 070303.
[2] Nonreciprocal microwave-optical entanglement in Kerr-modified cavity optomagnomechanics
Ming-Yue Liu(刘明月), Yuan Gong(龚媛), Jiaojiao Chen(陈姣姣), Yan-Wei Wang(王艳伟), and Wei Xiong(熊伟). Chin. Phys. B, 2025, 34(5): 057202.
[3] A pure quantum secret sharing scheme based on GHZ basis measurement and quantum entanglement exchange
Bai Liu(刘白), Jun Zhang(张俊), Shupin Qiu(邱书品), and Mingwu Zhang(张明武). Chin. Phys. B, 2025, 34(3): 030304.
[4] Measurement-based entanglement purification for hybrid entangled state
Cheng-Chen Luo(罗程晨), Shi-Pu Gu(顾世浦), Xing-Fu Wang(王兴福), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2025, 34(3): 030307.
[5] Coherence-protected operations in hybrid superconducting circuit-magnon system
Le-Tian Zhu(朱乐天), Xing-Yu Zhu(朱行宇), Zhu-Cheng Yue(岳祝诚), Tao Tu(涂涛), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2025, 34(3): 030302.
[6] Enhancing entanglement and steering in a hybrid atom-optomechanical system via Duffing nonlinearity
Ling-Hui Dong(董凌晖), Xiao-Jie Wu(武晓捷), Cheng-Hua Bai(白成华), and Shao-Xiong Wu(武少雄). Chin. Phys. B, 2025, 34(2): 020304.
[7] Quantum-state engineering using enhanced tripartite interactions in atom-photon-phonon hybrid systems
Yaowu Guo(郭耀武), Jiaqiang Zhao(赵加强), Lianzhen Cao(曹连振), Yingde Li(李英德), and Hong-Yan Lu(路红艳). Chin. Phys. B, 2025, 34(2): 024203.
[8] Entanglement and energy transportation in central-spin quantum battery
Fan Liu(刘帆), Hui-Yu Yang(杨慧宇), Shuai-Li Wang(王帅立), Jun-Zhong Wang(王俊钟), Kun Zhang(张堃), and Xiao-Hui Wang(王晓辉). Chin. Phys. B, 2025, 34(2): 020306.
[9] Multipartite entanglement and one-way steering in magnon frequency comb
Qianjun Zheng(郑芊君), Yunshan Cao(曹云姗), and Peng Yan(严鹏). Chin. Phys. B, 2025, 34(10): 107514.
[10] Entangling operations in a quantum repeater node using synchronized fast adiabatic pulses
Hai-Ping Wan(万海平), Xing-Yu Zhu(朱行宇), Zhu-Cheng Yue(岳祝成), Tao Tu(涂涛), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2025, 34(10): 100304.
[11] Multi-hop quantum teleportation based on HSES via GHZ-like states
She-Xiang Jiang(蒋社想), Xiao-Long Wei(韦晓龙), Jin-Huan Li(李金欢), and Shuai-Shuai Li(李帅帅). Chin. Phys. B, 2025, 34(1): 010302.
[12] Established conversions for hybrid entangled states assisted by error-predicted parity-discriminated devices
Fang-Fang Du(杜芳芳), Zhi-Guo Fan(范志国), Xue-Mei Ren(任雪梅), Ming Ma(马明), and Wen-Yao Liu(刘文耀). Chin. Phys. B, 2025, 34(1): 010303.
[13] Dzyaloshinskii-Moriya interaction and field-free sub-10 nm topological magnetism in Fe/bismuth oxychalcogenides heterostructures
Yaoyuan Wang(王垚元), Long You(游龙), Kai Chang(常凯), and Hongxin Yang(杨洪新). Chin. Phys. B, 2024, 33(9): 097508.
[14] Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红). Chin. Phys. B, 2024, 33(9): 090308.
[15] Delayed-measurement one-way quantum computing on cloud quantum computer
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁). Chin. Phys. B, 2024, 33(9): 090304.
No Suggested Reading articles found!