|
|
Entanglement and energy transportation in central-spin quantum battery |
Fan Liu(刘帆)1, Hui-Yu Yang(杨慧宇)1, Shuai-Li Wang(王帅立)1, Jun-Zhong Wang(王俊钟)1, Kun Zhang(张堃)1,2,3,†, and Xiao-Hui Wang(王晓辉)1,2,3,‡ |
1 School of Physics, Northwest University, Xi'an 710127, China; 2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China; 3 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China |
|
|
Abstract Quantum battery exploits the principle of quantum mechanics to transport and store energy. We study the energy transportation of the central-spin quantum battery, which is composed of $N_{\rm b}$ spins serving as the battery cells, and surrounded by $N_{\rm c}$ spins serving as the charger cells. We apply the invariant subspace method to solve the dynamics of the central-spin battery with a large number of spins. We establish a universal inverse relationship between the battery capacity and the battery-charger entanglement, which persists in any size of the battery and charger cells. Moreover, we find that when $N_{\rm b}=N_{\rm c}$, the central-spin battery has the optimal energy transportation, corresponding to the minimal battery-charger entanglement. Surprisingly, the central-spin battery has a uniform energy transportation behaviors in certain battery-charger scales. Our results reveal a nonmonotonic relationship between the battery-charger size and the energy transportation efficiency, which may provide more insights on designing other types of quantum batteries.
|
Received: 01 November 2024
Revised: 02 December 2024
Accepted manuscript online: 05 December 2024
|
PACS:
|
03.65.-w
|
(Quantum mechanics)
|
|
05.70.-a
|
(Thermodynamics)
|
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
Fund: Project supported by the National Natural Science Foundation (Grant Nos. 12275215, 12305028, and 12247103), the Major Basic Research Program of the Natural Science of Shaanxi Province, China (Grant No. 2021JCW-19), Shaanxi Fundamental Science Research Project for Mathematics and Physics (Grant No. 22JSZ005), and the Youth Innovation Team of Shaanxi Universities. |
Corresponding Authors:
Kun Zhang, Xiao-Hui Wang
E-mail: kunzhang@nwu.edu.cn;xhwang@nwu.edu.cn
|
Cite this article:
Fan Liu(刘帆), Hui-Yu Yang(杨慧宇), Shuai-Li Wang(王帅立), Jun-Zhong Wang(王俊钟), Kun Zhang(张堃), and Xiao-Hui Wang(王晓辉) Entanglement and energy transportation in central-spin quantum battery 2025 Chin. Phys. B 34 020306
|
[1] Nielsen M A and Chuang I 2000 Quantum computation and quantum information (Cambridge University Press) [2] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin G A and Wootters W K 1996 Phys. Rev. Lett. 76 722 [3] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 [4] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J L 2010 Nature 465 45 [5] Reiher M, Wiebe N, Svore K M, Wecker D and Troyer M 2017 Proc. Natl. Acad. Sci. USA 114 7555 [6] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis and Neven H 2018 Nat. Phys. 14 595 [7] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413 [8] Koepsell J, Bourgund D, Sompet P, Hirthe S, Bohrdt A,Wang Y, Grusdt F, Demler E, Salomon G, Gross C and Bloch 2021 Science 374 82 [9] Muniz J A, Barberena D, Lewis-Swan R J, Young D J, Cline J R K, Rey A M and Thompson J K 2020 Nature 580 602 [10] Blatt R and Roos C F 2020 Nat. Phys. 8 277 [11] Tamura M, Mukaiyama T and Toyoda K 2020 Phys. Rev. Lett. 124 200501 [12] Niu J J, Yan T X, Zhou Y X, Tao Z Y, Li X L, Liu W Y, Zhang L B, Jia H, Liu S, Yan Z B, Chen Y Z and Yu D 2021 Sci. Bull. 66 1168 [13] Guo Q J, Cheng C, Sun Z H, Song Z X, Li H K, Wang Z, Ren W H, Dong H, Zheng D N, Zhang Y R, Mondaini R, Fan H andWang H 2021 Nat. Phys. 17 234 [14] Campisi M, Hanggi P and Talkner P 2011 Rev. Mod. Phys. 83 1653 [15] Yang X, Yang Y H, Alimuddin M, Salvia R, Fei S M, Zhao L M, Nimmrichter S and Luo M X 2023 Phys. Rev. Lett. 131 030402 [16] Shi Y H, Shi H L, Wang X H, Hu M L, Liu S Y, Yang W L and Fan H 2020 J. Phys. A: Math. Theor. 53 085301 [17] Ji W, Chai Z, Wang M, Guo Y, Rong X, Shi F, Ren C L, Wang Y and Du J F 2022 Phys. Rev. Lett. 128 090602 [18] Dou F Q, Lu Y Q,Wang Y J and Sun J A 2022 Phys. Rev. B 105 115405 [19] Dou F Q, Zhou H and Sun J A 2022 Phys. Rev. A 106 032212 [20] Wang Z, Li H, Feng W, Song X, Song C, Liu W, Guo Q, Zhang X, Dong H, Zheng D, Wang H and Wang D W 2022 Phys. Rev. Lett. 124 013601 [21] Lu W, Chen J, Kuang L M and Wang X 2021 Phys. Rev. A 104 043706 [22] Uzdin R, Levy A and Kosloff R 2015 Phys. Rev. X 5 031044 [23] Brandão F G S L, Horodecki M, Oppenheim J, Renes J M and Spekkens R W 2013 Phys. Rev. Lett. 111 250404 [24] Alvarado Barrios G, Albarrán-Arriagada F, Cárdenas-López F A, Romero G and Retamal J C 2017 Phys. Rev. A 996 052119 [25] Altintas F, Hardal A Ü C and Müstecaplioǧlu Ö E 2014 Phys. Rev. E 90 032102 [26] Park J J, Kim K H, Sagawa T and Kim S W 2017 Phys. Rev. Lett. 111 230402 [27] Seah S, Perarnau-Llobet M, Haack G, Brunner N and Nimmrichter S 2017 Phys. Rev. Lett. 127 100601 [28] Manzano G, Plastina F and Zambrini R 2017 Phys. Rev. Lett. 121 120602 [29] Goold J, Huber M, Riera A, del Rio L and Skrzypczyk P 2016 J. Phys. A: Math. Theor. 49 143001 [30] Strasberg P, Schaller G, Brandes T and Esposito M 2017 Phys. Rev. X 7 021003 [31] Watanabe G, Venkatesh B P, Talkner P and del Campo A 2017 Phys. Rev. Lett. 118, 050601 [32] Zhang Y Y, Yang T R, Fu L and Wang X 2019 Phys. Rev. E 99 052106 [33] Alicki R and Fannes M 2013 Phys. Rev. E 87 042123 [34] Quach J Q, McGhee K E, Ganzer L, Rouse D M, Lovett B W, Gauger E M, Keeling J, Cerullo G, Lidzey D G and Virgili T 2022 Sci. Adv. 8 eabk3160 [35] Ferraro D, Campisi M, Andolina G M, Pellegrini V and Polini M 2018 Phys. Rev. Lett. 120 117702 [36] Fusco L, Paternostro M and Chiara G D 2016 Phys. Rev. E 94 052122 [37] Binder F C, Vinjanampathy S, Modi K and Goold J 2015 New J. Phys. 17 075015 [38] Andolina G M, Farina D, Mari A, Pellegrini V, Giovannetti V and Polini M 2018 Phys. Rev. B 98 205423 [39] Santos A C 2021 Phys. Rev. E 103 042118 [40] Rossini D, Andolina G M, Rosa D, Carrega Mand PoliniM2020 Phys. Rev. Lett. 125 236402 [41] YuWL, Zhang Y, Li H,Wei G F, Han L P, Tian F and Zou J 2023 Chin. Phys. B 32 010302 [42] Yang Z Q, Zhou L K, Zhou Z Y, Jin G R, Cheng L andWang X G 2023 Chin. Phys. B 32 110301 [43] Yao Y and Shao X Q 2021 Phys. Rev. E 104 044116 [44] Andolina G M, Keck M, Mari A, Campisi M, Giovannetti V and Polini M 2019 Phys. Rev. Lett. 122 047702 [45] Zhang X and Blaauboer M 2023 Front. Phys. 10 1097564 [46] Li J and Shen S Q 2007 Phys. Rev. B 76 153302 [47] Bortz M and Stolze J 2007 Phys. Rev. B 76 014304 [48] Gaudin M 1976 J. Phys. 37 10 [49] Dominguez F, Esebbag C and Dukelsky J 2006 J. Phys. A 39 11349 [50] Faribault A, Koussir H and Mohamed M H 2019 Phys. Rev. B 100 205420 [51] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J and Hollenberg L C L 2013 Phys. Rep. 528 1 [52] Fan J Y and Pang S S 2023 Phys. Rev. A 107 022209 [53] Li Z, Yang P, You W L and Wu N 2023 Phys. Rev. A 102 032409 [54] Schliemann J, Khaetskii A V and Loss D 2002 Phys. Rev. B 66 245304 [55] Alexander V Khaetskii, Loss D and Glazman L 2002 Phys. Rev. Lett. 88 186802 [56] Deng C and Hu X 2006 Phys. Rev. B 73 241303 [57] Peng L, He W B, Chesi S, Lin H Q and Guan X W 2021 Phys. Rev. A 103 052220 [58] Liu J X, Shi H L, Shi Y H, Wang X H and Yang W L 2021 Phys. Rev. B 104 245418 [59] Kamin F H, Tabesh F T, Salimi S and Santos A C 2020 Phys. Rev. E 102 052109 [60] Hovhannisyan K V, Perarnau-Llobet M, Huber M and Acin A 2013 Phys. Rev. Lett. 111 240401 [61] Shi H L, Ding S, Wan Q K, Wang X H and Yang W L 2022 Phys. Rev. Lett. 129 130602 [62] Dicke R H 1954 Phys. Rev. 93 99 [63] Villazon T, Chandran A and Claeys P W 2020 Phys. Rev. R 2 032052 [64] Tang L H, Long D M, Polkovnikov A, Chandran A and Claeys P W 2023 Scipost Phys. 15 030 [65] Le T, Levinsen J, Modi K, Parish M M and Pollock F A 2018 Phys. Rev. A 97 022106 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|