Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 010302    DOI: 10.1088/1674-1056/ad8db0
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Multi-hop quantum teleportation based on HSES via GHZ-like states

She-Xiang Jiang(蒋社想), Xiao-Long Wei(韦晓龙)†, Jin-Huan Li(李金欢), and Shuai-Shuai Li(李帅帅)
School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
Abstract  Implementing quantum wireless multi-hop network communication is essential to improve the global quantum network system. In this paper, we employ eight-level GHZ states as quantum channels to realize multi-hop quantum communication, and utilize the logical relationship between the measurements of each node to derive the unitary operation performed by the end node. The hierarchical simultaneous entanglement switching (HSES) method is adopted, resulting in a significant reduction in the consumption of classical information compared to multi-hop quantum teleportation (QT) based on general simultaneous entanglement switching (SES). In addition, the proposed protocol is simulated on the IBM Quantum Experiment platform (IBM QE). Then, the data obtained from the experiment are analyzed using quantum state tomography, which verifies the protocol's good fidelity and accuracy. Finally, by calculating fidelity, we analyze the impact of four different types of noise (phase-damping, amplitude-damping, phase-flip and bit-flip) in this protocol.
Keywords:  multi-hop quantum teleportation      GHZ-like state      hierarchical simultaneous entanglement swapping      IBM Quantum Experiment platform      quantum state tomography  
Received:  26 July 2024      Revised:  12 October 2024      Accepted manuscript online:  01 November 2024
PACS:  03.67.Hk (Quantum communication)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No. ZKSYS202204), the Talent Introduction Fund of Anhui University of Science and Technology (Grant No. 2021yjrc34), and the Scientific Research Fund of Anhui Provincial Education Department (Grant No. KJ2020A0301).
Corresponding Authors:  Xiao-Long Wei     E-mail:  461242289@qq.com

Cite this article: 

She-Xiang Jiang(蒋社想), Xiao-Long Wei(韦晓龙), Jin-Huan Li(李金欢), and Shuai-Shuai Li(李帅帅) Multi-hop quantum teleportation based on HSES via GHZ-like states 2025 Chin. Phys. B 34 010302

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[3] Gisin N and Bechmann-Pasquinucci H 1998 Phys. Lett. A 246 1
[4] Kiktenko E O, Popov A A and Fedorov A K 2016 Phys. Rev. A 93 062305
[5] Verma V 2020 IEEE Commun. Lett. 25 936
[6] Du Z, Li X and Liu X 2020 Int. J. Theor. Phys. 59 622
[7] Sk R, Dash T and Panigrahi P K 2021 IET Quantum Commun. 2 122
[8] Verma V 2020 Mod. Phys. Lett. A 35 2050333
[9] Dong L, Xiu X M, Gao Y J, Ren Y P and Liu HW2011 Opt. Commun. 284 905
[10] Tsai C W and Hwang T 2010 Int. J. Theor. Phys. 49 1969
[11] Joo J, Park Y J, Oh S and Kim J 2003 New J. Phys. 5 136
[12] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[13] Cheng S T, Wang C Y and Tao M H 2005 IEEE J. Sel. Areas Commun. 23 1424
[14] Wang K, Yu X T, Lu S L and Gong Y X 2014 Phys. Rev. A 89 022329
[15] Cai R, Yu X T and Zhang Z C 2018 Int. J. Theor. Phys. 57 1723
[16] Chen N, Shuai S, Yan B, Xu N and Pei C 2020 IEEE Access 8 52052
[17] Zhang Z and Sang Y 2023 Quantum Inf. Process. 22 201
[18] Wu F, Tang L, Bai M Q and Mo Z W 2023 Phys. Stat. Mech. Its Appl. 625 129022
[19] Yang G, Xing L, Nie M, Liu Y H and Zhang M L 2021 Chin. Phys. B 30 030301
[20] Gayathri Devi S, Manjula Gandhi S, Chandia S and Boobalaragavan P 2023 Exploring IBM Quantum Experience Quantum Computing: A Shift from Bits to Qubits Studies in Computational Intelligence Vol. 1085, ed R Pandey, N Srivastava, N K Singh and K Tyagi (Singapore: Springer Nature Singapore) pp. 265-82
[21] Sisodia M 2020 Quantum Inf. Process. 19 215
[22] Wei S J, Xin T and Long G L 2018 Sci. China Phys. Mech. Astron. 61 70311
[23] Kumar A, Haddadi S, Pourkarimi M R, Behera B K and Panigrahi P K 2020 Sci. Rep. 10 13608
[24] Sisodia M, Shukla A and Pathak A 2017 Phys. Lett. A 381 3860
[25] Majumder A, Mohapatra S and Kumar A 2017 arXiv:1707.07460v3 [quant-ph]
[26] Alsina D and Latorre J I 2016 Phys. Rev. A 94 012314
[27] Harper R and Flammia S T 2019 Phys. Rev. Lett. 122 080504
[28] Dharkar V and Kumar S 2024 2024 International Conference on Computing, Networking and Communications (ICNC) (Big Island, HI, USA: IEEE) pp. 11-5
[29] Kim M, Hwang M R, Jung E and Park D 2023 Quantum Inf. Process. 22 176
[30] Jiang Y, Li D, Zhu Y, Hua X, Fu Y, Zhou J, Yang X and Tan Y 2024 Int. J. Theor. Phys. 63 86
[31] Huffman E and Mizel A 2017 Phys. Rev. A 95 032131
[32] Vishnu P K, Joy D, Behera B K and Panigrahi P K 2018 Quantum Inf. Process. 17 274
[33] Yang G, Yang R, Gong Y X and Zhu S N 2023 Chin. Phys. B 32 110306
[34] Li J, Zhu J L, Gao J, Pang Z G and Wang Q 2022 Chin. Phys. Lett. 39 070303
[1] Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(8): 080301.
[2] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[3] Controlled mutual quantum entity authentication using entanglement swapping
Min-Sung Kang, Chang-Ho Hong, Jino Heo, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(9): 090306.
No Suggested Reading articles found!