Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(3): 030307    DOI: 10.1088/1674-1056/adb267
SPECIAL TOPIC — Quantum communication and quantum network Prev   Next  

Measurement-based entanglement purification for hybrid entangled state

Cheng-Chen Luo(罗程晨)1,3, Shi-Pu Gu(顾世浦)2, Xing-Fu Wang(王兴福)1, Lan Zhou(周澜)1,†, and Yu-Bo Sheng(盛宇波)2,3
1 College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Hybrid entangled states (HESs), which involve different particles with various degrees of freedom, have garnered significant attention and been applied in a wide range of quantum technologies. However, similar to other categories of entanglement, maximally HESs inevitably degrade to mixed states due to the environmental noise and operational imperfections. To address the degradation problem, measurement-based entanglement purification offers a feasible and robust solution alternative to conventional gate-based purification methods. In this paper, we propose a measurement-based hybrid entanglement purification protocol (MB-HEPP) for a certain kind of HES which consists of polarization photons and coherent states. We extend our methodology to several conditions, such as the multi-copy and multi-party scenarios, and the photon-loss condition. Compared with previous HEPPs, this protocol has several advantages. First, it does not depend on post-selection and the purified HESs can be retained for further application. Second, it does not require the Bell state measurement, but only uses the parity check with conventional linear optical elements, which makes it have the higher success probability and more feasible. Our MB-HEPP has potential applications in future heterogeneous quantum networks.
Keywords:  hybrid entanglement      measurement-based entanglement purification      parity check  
Received:  29 November 2024      Revised:  11 January 2025      Accepted manuscript online:  05 February 2025
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12175106 and 92365110) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX23-1028).
Corresponding Authors:  Lan Zhou     E-mail:  zhoul@njupt.edu.cn

Cite this article: 

Cheng-Chen Luo(罗程晨), Shi-Pu Gu(顾世浦), Xing-Fu Wang(王兴福), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波) Measurement-based entanglement purification for hybrid entangled state 2025 Chin. Phys. B 34 030307

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[4] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[5] Sheng Y B, Zhou L and Long G L 2022 Sci. Bull. 67 367
[6] Ying J W, Zhou L, Zhong W and Sheng Y B 2022 Chin. Phys. B 31 120303
[7] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[8] Zhang Q, Zhong W, Du M M, Shen S T, Li X Y, Zhang A L, Zhou L, and Sheng Y B 2024 Phys. Rev. A 110 042403
[9] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[10] Bernardes N K, Praxmeyer L and van Loock P 2011 Phys. Rev. A 83 012323
[11] Bergmann M and van Loock P 2019 Phys. Rev. A 99 032349
[12] Beals R, Brierley S, Gray O, Harrow AW, Kutin S, Linden N, Shepherd D and Stather M 2013 Proc. Math. Phys. Eng. Sci. 469 20120686
[13] Wang J, Sciarrino F, Laing A and Thompson M G 2020 Nat. Photonics 14 273
[14] Krelina M 2021 EPJ Quantum Technol. 8 24
[15] Pelucchi E, Fagas G, Aharonovich I, Englund D, Figueroa E, Gong Q, Hannes H, Liu J, Lu C Y and Matsuda N 2022 Nat. Rev. Phys. 4 194
[16] Krenn M, Landgraf J, Foesel T and Marquardt F 2023 Phys. Rev. A 107 010101
[17] Li SW, Feng T F, Hu X L and Zhou X Q 2023 Chin. Phys. B 32 104214
[18] Zhu P H, Zhong W, Du M M, Li X Y, Zhou L and Sheng Y B 2024 Chin. Phys. B 33 030302
[19] Fan J H, Xia P W, Dai D K and Chen Y X 2024 Chin. Phys. B 32 120304
[20] Jeong H, Zavatta A, Kang M, Lee S W, Costanzo L S, Grandi S, Ralph T C and Bellini M 2014 Nat. Photonics 8 564
[21] van Loock P 2011 Laser Photonics Rev. 5 167
[22] Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H and Pan J W 2019 Nat. Photonics 13 210
[23] Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379
[24] Cattaneo M, Paris M G and Olivares S 2018 Phys. Rev. A 98 012333
[25] Guccione G, Darras T, Le Jeannic H, Verma V B, Nam S W, Cavaillès A and Laurat J 2020 Sci. Adv. 6 eaba4508
[26] Omkar S, Teo Y S, Lee SWand Jeong H 2021 Phys. Rev. A 103 032602
[27] Andersen U L, Neergaard-Nielsen J S, van Loock P and Furusawa A 2015 Nat. Phys. 11 713
[28] Li S, Yan H, He Y and Wang H 2018 Phys. Rev. A 98 022334
[29] Ye Q Z, Liang Z T, Zhang W X, Pan D J, Xue Z Y and Yan H 2022 Phys. Rev. A 106 012407
[30] Ulanov A E, Sychev D, Pushkina A A, Fedorov I A and Lvovsky A I 2017 Phys. Rev. Lett. 118 160501
[31] Van Loock P, Ladd T, Sanaka K, Yamaguchi F, Nemoto K, Munro W and Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
[32] Zhao P, ZhongW, DuMM, Li X Y, Zhou L and Sheng Y B 2024 Front. Phys. 19 51201
[33] Djordjevic I B 2022 IEEE Access 10 23284
[34] Do H, Malaney R and Green J 2021 Quant. Engin. 3 e60
[35] Omkar S, Teo Y S and Jeong H 2020 Phys. Rev. Lett. 125 060501
[36] Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P and Schmiedmayer J 2015 Proc. Natl. Acad. Sci. USA 112 3866
[37] Shukla C, Malpani P and Thapliyal K 2021 Quantum Inf. Process. 20 1
[38] Yan P S, Zhou L, Zhong W and Sheng Y B 2023 Sci. China Phys. Mech. 66 250301
[39] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[40] Zhou L, Zhang S S, Zhong W and Sheng Y B 2020 Ann. Phys. 412 168042
[41] Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Zhang C, Xing W B, Huang Y F, Li C F and Guo G C 2021 Phys. Rev. Lett. 126 010503
[42] Wang G Y, Li T, Ai Q, Alsaedi A, Hayat T and Deng F G 2018 Phys. Rev. Appl. 10 054058
[43] Preti F, Calarco T, Torres J M and Bernád J Z 2022 Phys. Rev. A 106 022422
[44] Riera-Sàbat F, Sekatski P, Pirker A and Dür W 2021 Phys. Rev. Lett. 127 040502
[45] Parker S, Bose S and Plenio M B 2000 Phys. Rev. A 61 032305
[46] Rebic S, Mancini S, Morigi G and Vitali D 2010 J. Opt. Soc. Am. B 27 A198
[47] Fiurášek J, Marek P, Filip R and Schnabel R 2007 Phys. Rev. A 75 050302
[48] Jeong K and Lim Y 2016 Phys. Lett. A 380 3607
[49] Yan P S, Zhou L, ZhongWand Sheng Y B 2022 Front. Phys. 17 21501
[50] Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
[51] Chen L K, Yong H L, Xu P, Yao X C, Xiang T, Li Z D, Liu C, Lu H, Liu N L, Li L et al. 2017 Nat. Photonics 11 695
[52] Reichle R, Leibfried D, Knill E, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S and Wineland D J 2006 Nature 443 838
[53] Kalb N, Reiserer A A, Humphreys P C, Bakermans J J, Kamerling S J, Nickerson N H, Benjamin S C, Twitchen D J, Markham M and Hanson R 2017 Science 356 928
[54] Yan H, Zhong Y, Chang H S, Bienfait A, Chou M H, Conner C R, Dumur É, Grebel J, Povey R G and Cleland A N 2022 Phys. Rev. Lett. 128 080504
[55] Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
[56] Luo C C, Zhou L, ZhongWand Sheng Y B 2022 Quantum Inf. Process. 21 300
[57] Luo C C, Zhou L, Zhong W, Du M M, Li X Y and Sheng Y B 2024 Ann. Phys. (Berlin) 536 2300494
[58] Liu Y T, Wu Y M and Du F F 2022 Chin. Phys. B 31 050303
[59] Du F F, Fan G, Wu Y M and Ren B C 2023 Chin. Phys. B 32 060304
[60] Das S, Paul G, Banerji A 2020 Phys. Rev. A 102 052401
[61] Yan P S, Zhou L, Zhong W and Sheng Y B 2022 Phys. Rev. A 105 062418
[62] Zwerger M, Briegel H and Dür W 2013 Phys. Rev. Lett. 110 260503
[63] Wallnöfer J and Dür W 2017 Phys. Rev. A 95 012303
[64] Yan P S, Zhou L, Zhong W and Sheng Y B 2021 Opt. Express 29 9363
[65] Wang P, Zhang Z, Yu C Q, Yuan R Y, Du F F and Ren B C 2023 Ann. Phys. 535 2200505
[66] van Loock P, Lütkenhaus N, Munro W J and Nemoto K 2008 Phys. Rev. A 78 062319
[67] Zeilinger A, Horne M A, Weinfurter H and Żukowski M 1997 Phys. Rev. Lett. 78 3031
[68] Zheng C H, Zhao J, Shi P, LiWD and Gu Y J 2014 Opt. Commun. 316 26
[69] Jeong H and An N B 2006 Phys. Rev. A 74 022104
[1] Performance analysis of LDPC codes on OOK terahertz wireless channels
Chun Liu(刘纯), Chang Wang(王长), Jun-Cheng Cao(曹俊诚). Chin. Phys. B, 2016, 25(2): 028702.
[2] Direct measurement of the concurrence for two-qubit electron spin entangled pure state based on charge detection
Liu Jiong (刘炯), Zhou Lan (周澜), Sheng Yu-Bo (盛宇波). Chin. Phys. B, 2015, 24(7): 070309.
[3] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
No Suggested Reading articles found!