Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100304    DOI: 10.1088/1674-1056/add67e
GENERAL Prev   Next  

Entangling operations in a quantum repeater node using synchronized fast adiabatic pulses

Hai-Ping Wan(万海平)1, Xing-Yu Zhu(朱行宇)1,2, Zhu-Cheng Yue(岳祝成)1, Tao Tu(涂涛)1,3,†, and Chuan-Feng Li(李传锋)1,3,‡
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 School of Mechanical and Electronic Engineering, Suzhou University, Suzhou 234000, China;
3 Hefei National Laboratory, Hefei 230088, China
Abstract  Solid-state rare-earth ions are promising candidates for implementing repeater nodes for quantum networks. However, the state-of-the-art quantum nodes use only a single qubit per node, which greatly limits the functionality of the node and the scalability of the network. Here, we propose a scheme that utilizes a hybrid system of two ion qubits coupled to a nanophotonic cavity as a quantum node. Simultaneously applying a fast adiabatic pulse to the two ions can lead to an effective interaction between the two ion spin qubits by exchanging virtual photons in the cavity. Using this interaction, a controlled phase gate between the two ion qubits can be realized with a fidelity of 99.6%. Further utilizing this interaction, entangled states within the node can be generated deterministically with high fidelity, and are robust to a variety of noises and fluctuations. These results pave a way for fully functional quantum repeater nodes based on solid-state rare-earth ions.
Keywords:  cavity QED      quantum information with hybrid systems      entanglement production  
Received:  02 April 2025      Revised:  06 May 2025      Accepted manuscript online:  09 May 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12304401 and 12350006), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301200), and USTC Research Funds of the Double First-Class Initiative (Grant No. YD2030002026).
Corresponding Authors:  Tao Tu, Chuan-Feng Li     E-mail:  tutao@ustc.edu.cn;licf@ustc.edu.cn

Cite this article: 

Hai-Ping Wan(万海平), Xing-Yu Zhu(朱行宇), Zhu-Cheng Yue(岳祝成), Tao Tu(涂涛), and Chuan-Feng Li(李传锋) Entangling operations in a quantum repeater node using synchronized fast adiabatic pulses 2025 Chin. Phys. B 34 100304

[1] Kimble H J 2008 Nature 453 1023
[2] Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Rev. Mod. Phys. 83 33
[3] Northup T E and Blatt R 2014 Nat. Photon. 8 356
[4] Wehner S, Elkouss D and Hanson R 2018 Science 362 eaam9288
[5] Lauritzen B, Minar, J, de Riedmatten H, Afzelius M, Sangouard N, Simon C and Gisin N 2010 Phys. Rev. Lett. 104 080502
[6] Kolesov R, Xia K, Reuter R, et al. 2012 Nat. Commun. 3 1029
[7] Utikal T, Eichhammer E, Petersen L, et al. 2014 Nat. Commun. 5 3627
[8] Pierre Jobez1, Cyril Laplane1, Nuala Timoney, et al. 2015 Phys. Rev. Lett. 114 230502
[9] Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J and Sellars M J 2015 Nature 517 177
[10] Gundogan M, Ledingham P M, Kutluer K, Mazzera M and de Riedmatten H 2015 Phys. Rev. Lett. 114 230501
[11] Zhou Z Q, Hua Y L, Liu X, Chen G, Xu J S, Han Y J, Li C F and Guo G C 2015 Phys. Rev. Lett. 115 070502
[12] Zhong T, Kindem J M, Bartholomew J G, et al. 2018 Phys. Rev. Lett. 121 183603
[13] Dibos A M, Raha M, Phenicie CMand Thompson J D 2018 Phys. Rev. Lett. 120 243601
[14] Kindem J M, Ruskuc A, Bartholomew J G, et al. 2020 Nature 580 201
[15] Lago-Rivera D, Grandi S, Rakonjac J V, Seri A and de Riedmatten H 2021 Nature 594 37
[16] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F and Guo G C 2021 Nature 594 41
[17] Ruskuc A, Wu C J, Green E, et al 2025 Nature 639 54
[18] Guery-Odelin D, Ruschhaupt A, Kiely A, et al. 2019 Rev. Mod. Phys. 91 045001
[19] Chen X, Lizuain1 I, Ruschhaupt A, et al. 2010 Phys. Rev. Lett. 105 123003
[20] Bason M G, Viteau M, Malossi N, et al. 2012 Nat. Phys. 8 147
[21] del Campo A 2013 Phys. Rev. Lett. 111 100502
[22] An S, Lv D, Campo A, et al. 2016 Nat. Commun. 7 12999
[23] Wang T, Zhang Z X, Xiang L, et al. 2018 New J. Phys. 20 065003
[24] Li Y C, Chen Xi, Muga J G, et al. 2018 New J. Phys. 20 113029
[25] Zhou B B, Baksic A, Ribeiro H, et al. 2017 Nat. Phys. 13 330
[26] Winkler R, Papadakis S, De Poortere E and Shayegan M 2003 Spinorbit coupling in two-dimensional electron and hole systems Vol. 41 (Springer)
[27] Bravyi S, DiVincenzo D P and Loss D 2011 Ann. Phys. 326 2793
[28] Bottger T, Sun Y, Thiel C and Cone R 2006 Phys. Rev. B 74 075107
[29] Bottger T, Thiel C, Cone R and Sun Y 2009 Phys. Rev. B 79 115104
[30] Ulanowski A, Merkel B and Reiserer A 2022 Sci. Adv. 8 eabo4538
[31] Nielsen M A 2002 Phys. Lett. A 303 249
[32] Gilchrist A, Langford N K and Nielsen M A 2005 Phys. Rev. A 71 062310
[33] Simmons S, Brown R M, Riemann H, et al. 2011 Nature 470 69
[34] Steffen M, Ansmann M, Bialczak R C, et al. 2006 Science 313 1423
[35] Nickerson N H, Li Y and Benjamin S C 2013 Nat. Commun. 4 1756
[36] Nickerson N H, Fitzsimons J F and Benjamin S C 2014 Phys. Rev. X 4 041041
[37] Liu C, Zhu T X, Su M X, Ma Y Z, Zhou Z Q, Li C F and Guo G C 2020 Phys. Rev. Lett. 125 260504
[38] Zhu T X, Liu C, Jin M, Su M X, Liu Y P, Li W J, Ye Y, Zhou Z C, Li C F and Guo G C 2022 Phys. Rev. Lett. 128 180501
[39] Liu D C. Li P Y, Zhu T X, Zheng L, Huang J Y, Zhou Z Q, Li C F and Guo G C 2023 Phys. Rev. Lett. 129 120501
[40] Zhu X Y, Zhu L T, Guo G C, Tu T and Li C F 2025 Phys. Rev. A 111 012621
[41] Guo A L, Tu T, Zhu L T and Li C F 2021 Chin. Phys. Lett. 38 094203
[42] Zhu X Y, Zhu L T, Tu T and Li C F 2024 Chin. Phys. B 33 020315
[1] Coherence-protected operations in hybrid superconducting circuit-magnon system
Le-Tian Zhu(朱乐天), Xing-Yu Zhu(朱行宇), Zhu-Cheng Yue(岳祝诚), Tao Tu(涂涛), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2025, 34(3): 030302.
[2] Phase-modulated quadrature squeezing in two coupled cavities containing a two-level system
Hao-Zhen Li(李浩珍), Ran Zeng(曾然), Xue-Fang Zhou(周雪芳), Mei-Hua Bi(毕美华), Jing-Ping Xu(许静平), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2020, 29(5): 050308.
[3] Cavity enhanced measurement of trap frequency in an optical dipole trap
Peng-Fei Yang(杨鹏飞), Hai He(贺海), Zhi-Hui Wang(王志辉), Xing Han(韩星), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(4): 043701.
[4] Plasmon mediated entanglement dynamics of distant quantum dots
Misbah Qurban, Rabia Tahira, Guo-Qin Ge(葛国勤), Manzoor Ikram. Chin. Phys. B, 2019, 28(3): 030304.
[5] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[6] The entanglement of deterministic aperiodic quantum walks
Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120305.
[7] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[8] Photon bunching and anti-bunching with two dipole-coupled atoms in an optical cavity
Ya-Mei Zheng(郑雅梅), Chang-Sheng Hu(胡长生), Zhen-Biao Yang(杨贞标), Huai-Zhi Wu(吴怀志). Chin. Phys. B, 2016, 25(10): 104202.
[9] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2015, 24(7): 070310.
[10] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[11] Mesoscopic entangled coherent states implemented with a circuit quantum electrodynamics system
Zhao Ying-Yan (赵英燕), Jiang Nian-Quan (姜年权). Chin. Phys. B, 2013, 22(5): 050308.
[12] Large payload quantum steganography based on cavity quantum electrodynamics
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(4): 040305.
[13] Efficient generation of two-dimensional cluster states in cavity QED
Zhang Gang (张刚), Zhou Jian (周建), Xue Zheng-Yuan (薛正远). Chin. Phys. B, 2013, 22(4): 040307.
[14] Implementation of quantum controlled phase gate and preparation of multiparticle entanglement in cavity QED
Wu Xi(吴熙), Chen Zhi-Hua(陈志华), Zhang Yong(张勇), Chen Yue-Hua(陈悦华), Ye Ming-Yong(叶明勇), and Lin Xiu-Min(林秀敏). Chin. Phys. B, 2011, 20(6): 060306.
[15] Quantum logic operations on two distant atoms trapped in two optical-fibre-connected cavities
Zhang Ying-Qiao(张英俏), Zhang Shou(张寿), Yeon Kyu-Hwang, and Yu Seong-Cho . Chin. Phys. B, 2011, 20(12): 120310.
No Suggested Reading articles found!