|
Special Issue:
SPECIAL TOPIC — Advanced magnonics
|
| SPECIAL TOPIC — Advanced magnonics |
Prev
Next
|
|
|
Multipartite entanglement and one-way steering in magnon frequency comb |
| Qianjun Zheng(郑芊君), Yunshan Cao(曹云姗), and Peng Yan(严鹏)† |
| School of Physics and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China |
|
|
|
|
Abstract We theoretically demonstrate that multipartite entanglement and one-way Einstein-Podolsky-Rosen (EPR) steering in a magnon frequency comb (MFC) can be generated in a hybrid magnon-skyrmion system. When the system is driven by two microwave fields at the magnonic whispering gallery mode (mWGM) and the skyrmion, the skyrmion can be simultaneously entangled with three magnon modes of the MFC and the entanglement of the first-order magnon pair in the MFC also appears. The results show that the perfect one-way steering between the skyrmion and the three magnons can be obtained. Interestingly, the steering direction can be manipulated by controlling the amplitudes of two drive fields, which provides flexibility in controlling the asymmetry of the EPR steering and may well have practical applications. Moreover, the genuine tripartite entanglement among the skyrmion and the first-order magnon pair can be achieved with appropriate parameters in the steady state. Our work exhibits that the MFC has great potential in preparing multi-mode entanglement resources, with promising applications in quantum communication.
|
Received: 12 June 2025
Revised: 02 August 2025
Accepted manuscript online: 11 August 2025
|
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
| |
03.67.Bg
|
(Entanglement production and manipulation)
|
| |
12.39.Dc
|
(Skyrmions)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1402802) and the National Natural Science Foundation of China (Grant Nos. 12374103, 12434003, and 12074057). |
Corresponding Authors:
Peng Yan
E-mail: yan@uestc.edu.cn
|
Cite this article:
Qianjun Zheng(郑芊君), Yunshan Cao(曹云姗), and Peng Yan(严鹏) Multipartite entanglement and one-way steering in magnon frequency comb 2025 Chin. Phys. B 34 107514
|
[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [2] Caleffi M, Amoretti M, Ferrari D, Illiano J, Manzalini A and Cacciapuoti A S 2024 Computer Networks 254 110672 [3] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai, W Q, Yang M, Li L, et al. 2017 Nature 549 70 [4] Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, et al. 2020 Nature 582 501 [5] Cavalcanti D and Skrzypczyk P 2017 Rep. Prog. Phys. 80 024001 [6] Uola R, Costa A C, Nguyen H C and Gühne O 2020 Rev. Mod. Phys. 92 015001 [7] Branciard C, Cavalcanti E G, Walborn S P, Scarani V and Wiseman H M 2012 Phys. Rev. A 85 010301 [8] Kocsis S, Hall J M, Bennet A J, Saunders J D and Pryde J G 2014 Nat. Commun. 6 5886 [9] Walk N, Hosseini S, Geng, J, Thearle O, Haw J Y, Armstrong S, Assad S M, Janousek J, Ralph T C, Symul T, Wiseman H M and Lam P K 2016 Optica 3 634 [10] Wang M H, Xiang Y, Kang H J, Han DM, Liu Y, He Q Y, Gong Q H, Su X L and Peng K C 2020 Phys. Rev. Lett. 125 260506 [11] Jones B D, Šupić I, Roope U, Nicolas B and Paul S 2021 Phys. Rev. Lett. 127 170405 [12] Barreiro J T, Bancal J D, Schindler P, Nigg D, Hennrich M, Monz T, Gisin N and Blatt R 2013 Nat. Phys. 9 559 [13] Armstrong S, Wang M, Teh R Y, Gong Q H, He Q Y, Janousek J, Bachor H A, Reid M D and Lam P K 2015 Nat. Phys. 11 167 [14] Kunkel P, Prüfer M, Strobel H, Linnemann D, Frölian A, Gasenzer T, Gärttner M and Oberthaler M K 2018 Science 360 413 [15] Hao Z Y, Sun K, Wang Y, Liu Z H, Yang M, Xu J S, Li C F and Guo G C 2022 Phys. Rev. Lett. 128 120402 [16] Teh R Y, Gessner M, Reid M D and Fadel M 2022 Phys. Rev. A 105 012202 [17] Kues M, Reimer C, Lukens M J, Munro J W, Weiner M A, Moss J D and Morandotti R 2019 Nat. Photon. 13 170 [18] Pysher M, Miwa Y, Shahrokhshahi R, Bloomer R and Pfister O 2011 Phys. Rev. Lett. 107 030505 [19] Chen M, Menicucci N C and Pfister O 2014 Phys. Rev. Lett. 112 120505 [20] Reimer C, Kues M, Roztocki P, Wetzel B, Grazioso F, Little E B, Chu T S, Johnston T, Bromberg Y, Caspani L, Moss J D and Morandotti R 2016 Science 351 1176 [21] Wang Z Y, Yuan H Y, Cao Y S, Li Z X, Duine R A and Yan P 2021 Phys. Rev. Lett. 127 037202 [22] Hula T, Schultheiss K, Gonçalves F J T, Körber L, Bejarano M, Copus M, Flacke L, Liensberger L, Buzdakov A, Kákay A,Weiler M, Camley R, Fassbender J and Schultheiss H 2022 Appl. Phys. Lett. 121 112404 [23] Xu G T, Zhang M, Wang Y, Shen Z, Guo G C and Dong C H 2023 Phys. Rev. Lett. 131 243601 [24] Wang C Y, Rao J W, Chen Z J, Zhao K X, Sun L X, Yao B M, Yu T, Wang Y P and Lu W 2024 Nat. Phys. 20 1139 [25] Zhang Y L, Sheng L T, Chen J L, Wang J, Zhu Z T, Yuan R D, Lu J D, Wang H C, Hao, S J, Chen P, Yu G Q, Han X F and Yu H M 2023 Chin. Phys. B 32 107505 [26] Yao X L, Jin Z J Y, Wang Z Y, Zeng Z Z and Yan P 2023 Phys. Rev. B 108 134427 [27] Zhang C X, Jin Z J Y, Liu X J and Yan P 2024 Appl. Phys. Lett. 125 052401 [28] Liu Y, Liu T T, Yang Q Q, Tian G, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H and Liu J M 2024 Phys. Rev. B 109 174412 [29] Abdulrazak T, Liu X J, Jin, Z J Y, Cao Y S and Yan P 2024 Chin. Phys. B 33 087503 [30] Liu Z X 2024 Appl. Phys. Lett. 124 032403 [31] Verba R, Körber L, Schultheiss K, Schultheiss H, Tiberkevich V and Slavin A 2021 Phys. Rev. B 103 014413 [32] Qu T, Hamill A, Victora R H and Crowell P A 2023 Phys. Rev. B 107 L060401 [33] Schultheiss H, Vogt K and Hillebrands B 2012 Phys. Rev. B 86 054414 [34] Wang Y P, Zhang G Q, Zhang D K, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M and You J Q 2016 Phys. Rev. B 94 224410 [35] Wang Y P, Zhang G Q, Zhang D K, Li T F, Hu C M and You J Q 2018 Phys. Rev. Lett. 120 057202 [36] Zhang G Q, Wang Y P and You J Q 2019 China Phys. Mech. Astron. 62 987511 [37] Wu W J, Xu D, Qian J, Li Jie, Wang, Wang Y P and You J Q 2022 Chin. Phys. B 31 127503 [38] Wang X, Huang K W, Qiu Q Y and Xiong H 2023 Chaos, Solitons & Fractals 176 114137 [39] Jolin S W, Andersson G, Rivera Hernández J C, Strandberg I, Quijandr ía F, Aumentado J, Borgani R, Tholén M O and Haviland D B 2023 Phys. Rev. Lett. 130 120601 [40] Zheng Q J, Yuan H Y, Cao Y S and Yan P 2025 Phys. Rev. B 111 214433 [41] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288 [42] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405 [43] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318 [44] Kogias I, Lee A R, Ragy S and Adesso G 2015 Phys. Rev. Lett. 114 060403 [45] Adesso G and Illuminati F 2006 New J. Phys. 8 15 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|