Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 070303    DOI: 10.1088/1674-1056/adc7ee
GENERAL Prev   Next  

Quantum-enhanced time-of-arrival measuring method based on partially entangled state

Peng-Xian Li(李芃鲜)1, Lu-Ping Xu(许录平)1,†, Gui-Ting Hu(胡桂廷)1, and Wen-Long Gao(高文珑)2
1 School of Aerospace Science and Technology, Xidian University, Xi'an 710126, China;
2 Electronic Engineering Research Institute, Xi'an 710100, China
Abstract  We present a quantum ranging protocol that overcomes photon-loss limitations using optimized partially frequency-entangled states. By establishing the fundamental relationship between the degree of entanglement, channel transmission efficiency and measurement precision, we demonstrate superclassical timing resolution in both lossless and lossy regimes. Theoretical analysis and numerical simulations reveal that, under a lossless channel, the precision gain increases with the degree of entanglement, approaching the Heisenberg limit. Importantly, in lossy channels, the precision gain is significantly influenced by both the channel transmission efficiency and the degree of entanglement. For transmission efficiencies above 50%, the proposed method provides up to 1.5 times the precision gain of classical methods when entanglement parameters are optimized. Moreover, by optimizing intra-group and inter-group covariances in the multi-structured entangled state, we achieve substantial precision gains even at low transmission efficiencies ($\sim 30%$), demonstrating its robustness against loss. This study resolves the critical trade-off between entanglement-enhanced precision and loss-induced information degradation. Future implementation could extend to satellite-based quantum positioning, remote sensing, quantum illumination, and other fields that require high-precision ranging in lossy environments. The protocol establishes a universal framework for loss-tolerant quantum metrology, advancing the practical deployment of quantum-enhanced sensing in real-world applications.
Keywords:  quantum ranging      partially entangled state      degree of entanglement  
Received:  14 January 2025      Revised:  24 March 2025      Accepted manuscript online:  02 April 2025
PACS:  03.67.-a (Quantum information)  
  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071363) and the Key Research and Development Projects of Shaanxi Province, China (Grant No. 2021LLRH-06).
Corresponding Authors:  Lu-Ping Xu     E-mail:  Lpxu@mail.xidian.edu.cn

Cite this article: 

Peng-Xian Li(李芃鲜), Lu-Ping Xu(许录平), Gui-Ting Hu(胡桂廷), and Wen-Long Gao(高文珑) Quantum-enhanced time-of-arrival measuring method based on partially entangled state 2025 Chin. Phys. B 34 070303

[1] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733
[2] Walls D F 1983 Nature 306 141
[3] Giovannetti V, Lloyd S and Maccone L 2001 Nature 412 417
[4] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[5] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photonics 5 222
[6] Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J and Mavalvala N 2008 Nat. Phys. 4 472
[7] Schnabel R, Mavalvala N, McClelland D E and Lam P K 2010 Nat. Commun. 1 121
[8] D’Ariano G M, Lo Presti P and Paris M G A 2001 Phys. Rev. Lett. 87 270404
[9] Fabre C, Fouet J B and Maître A 2000 Opt. Lett. 25 76
[10] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[11] Cimini V, Gianani I, Ruggiero L, Gasperi T, Sbroscia M, Roccia E, Tofani D, Bruni F, Ricci M A and Barbieri M 2019 Phys. Rev. A 99 053817
[12] Nasr M B, Goode D P, Nguyen N, Rong G, Yang L, Reinhard B M, Saleh B E A and Teich M C 2009 Opt. Commun. 282 1154
[13] Taylor M A and Bowen W P 2016 Phys. Rep. 615 1
[14] Bahder T B and Golding W M 2003 AIP Conf. Proc. 734 395
[15] Zhuang Q 2021 Phys. Rev. Lett. 126 240501
[16] Gao L, Zheng L, Lu B, Shi S, Tian L and Zheng Y 2024 Opt. Lett. 13 294
[17] Sun X, Li W, Tian Y, Li F, Tian L, Wang Y and Zheng Y 2022 Phys. Rev. 10 2886
[18] LiW, Ju M, Li Q, Li R, YaoW,Wu Y,Wang Y, Tian L, Shi S and Zheng Y 2024 Chin. Opt. Lett. 22 072701
[19] Kang G, Feng J, Cheng L, Li Y and Zhang K 2023 Chin. Phys. B 32 104204
[20] Giovannetti V, Lloyd S and Maccone L 2002 Phys. Rev. A 65 022309
[21] Shapiro J H 2003 Proc. SPIE 5113 31
[22] Lloyd S 2008 Science 321 1463
[23] Tan S-H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S and Shapiro J H 2008 Phys. Rev. Lett. 101 253601
[24] Gao W L, Xu L P and Zhang H 2023 Opt. Express 31 41887
[25] Burnham D C and Weinberg D L 1970 Phys. Rev. Lett. 25 84
[26] Chen J, Li X and Kumar P 2004 Proc. SPIE 5551 121
[27] Law C K and Eberly J H 2004 Phys. Rev. Lett. 92 127903
[28] Fedorov M, Efremov M, Kazakov A, Chan K, Law C and Eberly J 2004 Phys. Rev. A 69 052117
[29] Yang C Y, Wu D W, Yu Y L and Zhang H 2011 J. Beijing Univ. Posts Telecommun. 34 33 (in Chinese)
[1] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[2] Quantum communication for satellite-to-ground networks with partially entangled states
Chen Na (陈娜), Quan Dong-Xiao (权东晓), Pei Chang-Xing (裴昌幸), Yang-Hong (杨宏). Chin. Phys. B, 2015, 24(2): 020304.
[3] Teleporting a quantum controlled-Not with one target/two targets gate using two partially entangled states
Chen Li-Bing(陈立冰), Jin Rui-Bo(金锐博), and Lu Hong(路洪). Chin. Phys. B, 2009, 18(1): 30-34.
[4] Quantum secure direct communication via partially entangled states
Man Zhong-Xiao(满忠晓) and Xia Yun-Jie(夏云杰) . Chin. Phys. B, 2007, 16(5): 1197-1200.
[5] Quantum circuits for realizing deterministic and exact teleportation via two partially entangled pairs of particles
Li Wen-Dong (李文东), Zhang Jian-Li (张建立), Gu Yong-Jian (顾永建). Chin. Phys. B, 2006, 15(3): 482-487.
[6] Evolution of field entropy and entanglement in the intensity-dependent two-mode Jaynes-Cummings model
Gao Yun-Feng (高云峰), Feng Jian (冯健), Wang Ji-Suo (王继锁). Chin. Phys. B, 2005, 14(5): 980-984.
No Suggested Reading articles found!