Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100501    DOI: 10.1088/1674-1056/addd84
GENERAL Prev   Next  

Condensation and criticality of eigen microstates of phase fluctuations in Kuramoto model

Ning-Ning Wang(王宁宁)1,2, Qing Yao(姚卿)3, Ying Fan(樊瑛)3, Zeng-Ru Di(狄增如)3,4, and Xiao-Song Chen(陈晓松)3,5,†
1 School of Artificial Intelligence, Tiangong University, Tianjin 300387, China;
2 School of Mathematical Science, Nankai University, Tianjin 300071, China;
3 School of Systems Science, Beijing Normal University, Beijing 100875, China;
4 International Academic Center of Complex Systems, Beijing Normal University, Zhuhai 519087, China;
5 Institute for Advanced Study in Physics and School of Physics, Zhejiang University, Hangzhou 310058, China
Abstract  The Kuramoto model is one of the most profound and classical models of coupled phase oscillators. Because of the global couplings between oscillators, its precise critical exponents can be obtained using the mean-field approximation (MFA), where the time average of the modulus of the mean-field is defined as the order parameter. Here, we further study the phase fluctuations of oscillators from the mean-field using the eigen microstate theory (EMT), which was recently developed. The synchronization of phase fluctuations is identified by the condensation and criticality of eigen microstates with finite eigenvalues, which follow the finite-size scaling with the same critical exponents as those of the MFA in the critical regime. Then, we obtain the complete critical behaviors of phase oscillators in the Kuramoto model. We anticipate that the critical behaviors of general phase oscillators can be investigated by using the EMT and different critical exponents from those of the MFA will be obtained.
Keywords:  synchronization      coupled oscillators      eigen microstate      criticality  
Received:  27 April 2025      Revised:  25 May 2025      Accepted manuscript online:  28 May 2025
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.70.Fh (Phase transitions: general studies)  
  64.60.Ht (Dynamic critical phenomena)  
Fund: The authors would like to thank Dr Teng Liu, Dr Xiaojie Chen, Dr Gaoke Hu and Dr Jiaqi Dong for the insightful and valuable discussions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 12135003, 71731002, and 12471141), the Postdoctoral Fellowship Program of CPSF (Grant No. GZC20231179), the China Postdoctoral Science Foundation–Tianjin Joint Support Program (Grant No. 2023T001TJ), and the Tianjin Education Commission scientific Research Project (Grant No. 2023SK070).
Corresponding Authors:  Xiao-Song Chen     E-mail:  chenxs@bnu.edu.cn

Cite this article: 

Ning-Ning Wang(王宁宁), Qing Yao(姚卿), Ying Fan(樊瑛), Zeng-Ru Di(狄增如), and Xiao-Song Chen(陈晓松) Condensation and criticality of eigen microstates of phase fluctuations in Kuramoto model 2025 Chin. Phys. B 34 100501

[1] Ikeda Y, Aoyama H, Fujiwara Y, Iyetomi H, Ogimoto K, SoumaWand Yoshikawa H 2012 Progress of Theoretical Physics Supplement 194 111
[2] Wilson C J and Callaway J C 2000 Journal of Neurophysiology 83 3084
[3] Martens E A, Thutupalli S, Fourriere A and Hallatschek O 2013 Proc. Natl. Acad. Sci. USA 110 10563
[4] Doelling K B, Assaneo M F, Bevilacqua D, Pesaran B and Poeppel D 2019 Proc. Natl. Acad. Sci. USA 116 201816414
[5] Kralemann B, Fruhwirth M, Pikovsky A, Rosenblum M, Kenner T, Schaefer J and Moser M 2013 Nat. Commun. 4 2418
[6] Ott E and Antonsen T M 2008 Chaos 18 037113
[7] Strogatz S H 2000 Physica D 143 1
[8] Acebron J A, Bonilla L L, Vicente C P, Ritort F and Spigler R 2005 Rev. Mod. Phys. 77 137
[9] Oh E, Lee D, Kahng B and Kim D 2007 Phys. Rev. E 75 011104
[10] Sakaguchi H 2000 Phys. Rev. E 61 7212
[11] Miritello G, Pluchino A and Rapisarda A 2009 Europhys. Lett. 85 10007
[12] Moloney D and Nicholas R 2005 Complexity and Criticality (Imperial College Press)
[13] Li X T and Chen X S 2016 Commun. Theor. Phys. 66 355
[14] Zhang X, Hu G, Zhang Y, Li X and Chen X 2018 Science Chinaphysics Mechanics and Astronomy 61 120511
[15] Hu G K, Liu T, Liu M X, Chen W and Chen X S 2019 Science China Physics, Mechanics and Astronomy
[16] Sun Y, Hu G, Zhang Y, Lu B, Lu Z, Fan J, Li X, Deng Q and Chen X 2021 Commun. Theor. Phys. 73 065603
[17] Li X, Xue T T, Sun Y, Fan J F, Li H, Liu M X, Han Z G, Di Z R and Chen X S 2021 Chin. Phys. B 30 128703
[18] Liu T, Hu G K, Dong J Q, Fan J F, Liu M X and Chen X S 2022 Chin. Phys. Lett. 39 080503
[19] Zhang Y, Liu M, Hu G, Liu T and Chen X 2024 Phys. Rev. E 109 044130
[20] Hu G, Sun Y, Liu T, Zhang Y, Liu M, Fan J, Chen W and Chen X 2023 Science China Physics, Mechanics & Astronomy 66 120511
[21] Chen X, Ying N, Chen D, Zhang Y, Lu B, Fan J and Chen X 2021 Chaos 31 071102
[22] Sun Y, Meng J, Yao Q, Saberi A A, Chen X, Fan J and Kurths J 2021 Phys. Rev. E 104 064139
[23] Wang N N, Qiu S H, Zhong XWand Di Z R 2023 Applied Mathematics and Computation 449 127924
[24] Wang N N,Wang Y J and Di Z R 2024 Chaos, Solitons & Fractals 188 115519
[25] Huo S and Liu Z 2023 Communications Physics 6 285
[26] Chen X, Ren H, Tang Z, Zhou K, Zhou L, Zuo Z, Cui X, Chen X, Liu Z, He Y, et al. 2023 Communications Biology 6 892
[27] Zheng Z, Xu C, Fan J, Liu M and Chen X 2024 Chaos 34 022101
[28] Moyal B, Rajwani P, Dutta S and Jalan S 2024 Phys. Rev. E 109 034211
[29] Li X, Zhang J, Zou Y and Guan S 2019 Chaos 29 043102
[30] Skardal P S, Ott E and Restrepo J G 2011 Phys. Rev. E 84 036208
[31] Lepri S and Ruffo S 2001 Europhys. Lett. 55 512
[32] Hong H, Park H and Choi M 2005 Phys. Rev. E 72 036217
[33] Hong H, Chaté H, Park H and Tang L H 2007 Phys. Rev. Lett. 99 184101
[34] Hong H, Chate H, Tang L and Park H 2015 Phys. Rev. E 92 022122
[35] Daido H 2015 Phys. Rev. E 91 012925
[36] Tang L H 2011 J. Stat. Mech.: Theory and Experiment 2011 P01034
[37] Hong H, Um J and Park H 2013 Phys. Rev. E 87 042105
[38] Um J, Hong H and Park H 2014 Phys. Rev. E 89 012810
[1] Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model
Zhongshan Su(苏中山), Yuan Jiang(江源), Gaoke Hu(胡高科), Yue-Hua Su(苏跃华), Liangsheng Li(李粮生), Wen-Long You(尤文龙), Maoxin Liu(刘卯鑫), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2025, 34(8): 086401.
[2] Effects of noise on synchronization in simplicial complexes
Linying Xiang(项林英), Shuwei Yao(姚姝玮), Yining Chen(陈艺宁), Ruitong Yan(闫锐桐), and Ruya Xia(夏儒雅). Chin. Phys. B, 2025, 34(7): 070503.
[3] Optimal synchronization of higher-order Kuramoto model on hypergraphs
Chong-Yang Wang(王重阳), Bi-Yun Ji(季碧芸), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2025, 34(7): 070502.
[4] Synchronous dynamics of robotic arms driven by Chua circuits
Guoping Sun(孙国平), Mingxin Xu(许明鑫), Guoqiang Jin(金国强), and Xufeng Wang(王旭峰). Chin. Phys. B, 2025, 34(6): 060501.
[5] Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control
Cheng-Jun Xie(解成俊) and Xiang-Qing Lu(卢向清). Chin. Phys. B, 2025, 34(4): 040601.
[6] Dynamical behavior of ring-star neural networks with small-world characteristics
Minglin Ma(马铭磷), Zhiyi Yuan(袁芷依), Umme Kalsoom, Weizheng Deng(邓为政), and Shaobo He(贺少波). Chin. Phys. B, 2025, 34(10): 100502.
[7] Noise-induced phase transition in the Vicsek model through eigen microstate methodology
Yongnan Jia(贾永楠), Jiali Han(韩佳丽), and Qing Li(李擎). Chin. Phys. B, 2024, 33(9): 090501.
[8] Proposal for a realtime Einstein-synchronization-defined satellite virtual clock
Chenhao Yan(严晨皓), Xueyi Tang(汤雪逸), Shiguang Wang(王时光), Lijiaoyue Meng(孟李皎悦), Haiyuan Sun(孙海媛), Yibin He(何奕彬), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(7): 070601.
[9] Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system
Ling Xu(徐玲) and Lei Jiang(姜磊). Chin. Phys. B, 2024, 33(6): 060503.
[10] Dynamics and synchronization of neural models with memristive membranes under energy coupling
Jingyue Wan(万婧玥), Fuqiang Wu(吴富强), Jun Ma(马军), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2024, 33(5): 050504.
[11] Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high-low frequency signal
Charles Omotomide Apata, Yi-Rui Tang(唐浥瑞), Yi-Fan Zhou(周祎凡), Long Jiang(蒋龙), and Qi-Ming Pei(裴启明). Chin. Phys. B, 2024, 33(5): 058704.
[12] Chimera states of phase oscillator populations with nonlocal higher-order couplings
Yonggang Wu(伍勇刚), Huajian Yu(余华健), Zhigang Zheng(郑志刚), and Can Xu(徐灿). Chin. Phys. B, 2024, 33(4): 040504.
[13] Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
Jieyu Lu(鲁婕妤), Xiaohua Xie(谢小华), Yaping Lu(卢亚平), Yalian Wu(吴亚联), Chunlai Li(李春来), and Minglin Ma(马铭磷). Chin. Phys. B, 2024, 33(4): 048701.
[14] Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
Minglin Ma(马铭磷), Kangling Xiong(熊康灵), Zhijun Li(李志军), and Shaobo He(贺少波). Chin. Phys. B, 2024, 33(2): 028706.
[15] Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise
Xun Yan(晏询), Zhijun Li(李志军), and Chunlai Li(李春来). Chin. Phys. B, 2024, 33(2): 028705.
No Suggested Reading articles found!