|
|
|
Antichiral edge states in a square lattice |
| Peng-Yu Guo(郭鹏宇)1, Wei Li(黎炜)1, Junhui Hu(胡君辉)1, and Hai-Xiao Wang(王海啸)1,2,† |
1 School of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China; 2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
|
|
Abstract Recent advances in topological phases with broken time-reversal symmetry unveil a novel gapless topological phase, i.e., antichiral edge state, featuring co-propagating along the parallel edges. However, to date, such antichiral edge states are only realized in the modified Haldane model, which are based on the honeycomb lattice. Here, we realize the antichiral edge states in a square-lattice tight-binding model with complex nearest-neighbor coupling and both positive and negative next-nearest-neighbor couplings. In contrast to previous proposals, the complex nearest-neighbor coupling breaks the time-reversal symmetry, and the negative next nearest-neighbor coupling shift two Dirac points in energy. We also propose a possible scheme to realize our model with the assistance of acoustic metamaterials. The existence of antichiral edge states is revealed through full-wave simulation of the band structure and acoustic fields excited by a point source.
|
Received: 19 April 2025
Revised: 13 May 2025
Accepted manuscript online: 15 May 2025
|
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
| |
05.30.Rt
|
(Quantum phase transitions)
|
| |
43.35.+d
|
(Ultrasonics, quantum acoustics, and physical effects of sound)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12474432), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2023GXNSFAA026048), and the Start-up Funding from Ningbo University. |
Corresponding Authors:
Hai-Xiao Wang
E-mail: wanghaixiao@nbu.edu.cn
|
Cite this article:
Peng-Yu Guo(郭鹏宇), Wei Li(黎炜), Junhui Hu(胡君辉), and Hai-Xiao Wang(王海啸) Antichiral edge states in a square lattice 2025 Chin. Phys. B 34 100307
|
[1] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [2] Haldane F D M and Raghu S 2008 Phys. Rev. Lett. 100 13904 [3] Wang Z, Chong Y D, Joannopoulos J D and Soljačić M 2008 Phys. Rev. Lett. 100 13905 [4] Wang Z, Chong Y, Joannopoulos J D and Soljačić M 2009 Nature 461 772 [5] Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y and Zhang B 2015 Phys. Rev. Lett. 114 114301 [6] Khanikaev A B, Fleury R, Mousavi S H and Alù A 2015 Nat. Commun. 6 8260 [7] Xiao M, Chen W J, He W Y and Chan C T 2015 Nat. Phys. 11 920 [8] Ni X, He C, Sun X C, Liu X, Lu M H, Feng L and Chen Y F 2015 New J. Phys. 17 53016 [9] Ding Y, Peng Y, Zhu Y, Fan X, Yang J, Liang B, Zhu X, Wan X and Cheng J 2019 Phys. Rev. Lett. 122 14302 [10] Wang P, Lu L and Bertoldi K 2015 Phys. Rev. Lett. 115 104302 [11] Nash L M, Kleckner D, Read A, Vitelli V, Turner A M and Irvine W T M 2015 Proc. Natl. Acad. Sci. USA 112 14495 [12] Wang Y T, Luan P G and Zhang S 2015 New J. Phys. 17 73031 [13] Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237 [14] Colomés E and Franz M 2018 Phys. Rev. Lett. 120 86603 [15] Zhou P, Liu G G, Yang Y, Hu Y H, Ma S, Xue H, Wang Q, Deng L and Zhang B 2020 Phys. Rev. Lett. 125 263603 [16] Chen J, Liang W and Li Z Y 2020 Phys. Rev. B 101 214102 [17] Wang H, Xie B and Ren W 2023 Laser & Photon. Rev. 18 2300764 [18] Wang J, Ji X, Shi Z, Zhang Y, Li H, Li Y, Deng Y and Xie K 2023 Eur. Phys. J. Plus 138 1149 [19] Wu H, Xu K, Shi Y, Chen P, Poo Y, Liu S andWu R X 2024 Appl. Phys. Lett. 124 31101 [20] Xi X, Yan B, Yang L, Meng Y, Zhu Z X, Chen J M, Wang Z, Zhou P, Shum P P, Yang Y, Chen H, Mandal S, Liu G G, Zhang B and Gao Z 2023 Nat. Commun. 14 1991 [21] Liu J W, Shi F L, Shen K, Chen X D, Chen K, Chen W J and Dong J W 2023 Nat. Commun. 14 2027 [22] Xie L, Jin L and Song Z 2023 Sci. Bull. 68 255 [23] Chen J and Li Z Y 2022 Opto-Electron. Sci. 1 220001 [24] Chen J and Li Z Y 2022 Phys. Rev. Lett. 128 257401 [25] Yu L, Xue H and Zhang B 2021 J. Appl. Phys. 129 235103 [26] Cheng X, Chen J, Zhang L, Xiao L and Jia S 2021 Phys. Rev. B 104 L081401 [27] Wang Y, Liang B and Cheng J 2024 Phys. Rev. Appl. 22 044054 [28] Yang Y, Zhu D, Hang Z and Chong Y 2021 Sci. China- Phys. Mech. Astron. 64 257011 [29] Jiang J H 2012 Phys. Rev. A 85 033640 [30] Yang Z, Gao F, Shi X and Zhang B 2016 New J. Phys. 18 125003 [31] Sun K, Liu W V, Hemmerich A and Das Sarma S 2012 Nat. Phys. 8 67 [32] Wang H X, Lin Z K, Jiang B, Guo G Y and Jiang J H 2020 Phys. Rev. Lett. 125 146401 [33] Qi Y, Qiu C, Xiao M, He H, Ke M and Liu Z 2020 Phys. Rev. Lett. 124 206601 [34] Ryu S and Hatsugai Y 2002 Phys. Rev. Lett. 89 77002 [35] Ma J, Zhou T, Tang M, Li H, Zhang Z, Xi X, Martin M, Baron T, Liu H, Zhang Z, Chen S, Sun X, Ganeshan S, Sun K and Das Sarma S 2025 Phys. Rev. Lett. 110 180403 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|