Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 106801    DOI: 10.1088/1674-1056/addeb9
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Epitaxial growth of Bi nanowires on Pb-√77 × √3 surface

Siyu Huo(霍思宇)1,2,†, Jieying Li(李洁莹)1,2,†, Yuzhou Liu(刘宇舟)1,2, Desheng Cai(蔡德胜)1,2, Yitong Gu(谷易通)1,2, Haoen Chi(迟浩恩)1,2, Wenhui Pang(庞文慧)1,2, Gan Yu(于淦)1,2, Xiaoying Shi(史晓影)1,2, Wenguang Zhu(朱文光)1,2,3,‡, and Shengyong Qin(秦胜勇)1,2,3,§
1 International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei 230026, China;
2 CAS (Chinese Academy of Sciences) Key Laboratory of Strongly Coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei 230026, China;
3 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  Confining particles in one-dimensional (1D) systems profoundly modifies their electronic behaviors, which have been extensively demonstrated in carbon nanotubes and atomic chains. Structural instabilities and electron localizations often dominate the conductivity of 1D nanowires. Here, we successfully grew Bi single nanowires and nanowire arrays on Pb-$\sqrt 7 \times\sqrt 3 $ substrates via molecular beam epitaxy, both of which exhibit metallic behavior. Using scanning tunneling microscopy and first-principles density functional theory calculations, the interwire coupling and the correlation between nanowire bundles and electronic properties are investigated. A characteristic peak at 0.75 eV is observed on single wires and wire bundles of up to four nanowires, whereas interwire coupling weakens it and makes it disappear for wire bundles of five and above. These findings illustrate that the interwire coupling plays a critical role in the electronic structure of the 1D system, which provides insights for the design of nano-electronics materials.
Keywords:  one-dimensional system      nanowire      molecular beam epitaxy      scanning tunneling microscopy      scanning tunneling spectroscopy      interwire coupling      localization  
Received:  15 April 2025      Revised:  29 May 2025      Accepted manuscript online:  30 May 2025
PACS:  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.21.-b (Electron states and collective excitations in multilayers, quantum wells, mesoscopic, and nanoscale systems)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12374196, 92165201, and 11634011), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302800), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-046), the Fundamental Research Funds for the Central Universities (Grant Nos. WK3510000006 and WK3430000003), and the Initiative Project in Quantum Information Technologies of Anhui Province, China (Grant No. AHY170000).
Corresponding Authors:  Wenguang Zhu, Shengyong Qin     E-mail:  wgzhu@ustc.edu.cn;syqin@ustc.edu.cn

Cite this article: 

Siyu Huo(霍思宇), Jieying Li(李洁莹), Yuzhou Liu(刘宇舟), Desheng Cai(蔡德胜), Yitong Gu(谷易通), Haoen Chi(迟浩恩), Wenhui Pang(庞文慧), Gan Yu(于淦), Xiaoying Shi(史晓影), Wenguang Zhu(朱文光), and Shengyong Qin(秦胜勇) Epitaxial growth of Bi nanowires on Pb-√77 × √3 surface 2025 Chin. Phys. B 34 106801

[1] Yan K, Zhang L, Kuang Q, Wei Z, Yi Y, Wang J and Yang S 2014 ACS Nano 8 3771
[2] Tian Y, Sakr M R, Kinder J M, Liang D, MacDonald M J, Qiu R L, Gao H J and Gao X P 2012 Nano Lett. 12 6492
[3] Hong S S, Zhang Y, Cha J J, Qi X L and Cui Y 2014 Nano Lett. 14 2815
[4] Liu P, Williams J R and Cha J J 2019 Nat. Rev. Mater. 4 479
[5] Cao L, Ang Y S, Wu Q and Ang L K 2020 Phys. Rev. B 101 035422
[6] Rogers J A 2010 Nat. Nanotechnol. 5 698
[7] Wu D J, Jiang S M and Liu X J 2012 Chin. Phys. B 21 077803
[8] Boukai A I, Bunimovich Y, Tahir K J, Yu J K, Goddard I W A and Heath J R 2008 Nature 451 168
[9] Goktas N I, Wilson P, Ghukasyan A, Wagner D, McNamee S and LaPierre R 2018 Appl. Phys. Rev. 5 041305
[10] Zhang Z and Chen J 2018 Chin. Phys. B 27 035101
[11] Sutter P, French J S, Khorashad L K, Argyropoulos C and Sutter E 2021 Nano Lett. 21 4335
[12] Park I, Jin K H, Kim K W and Kim J 2025 Small 21 2409249
[13] Wang D Q, Zhou Z Y, Zhu R and Ye X Y 2008 Chin. Phys. B 17 3875
[14] Xu Y J, Cao G H, Li Q Y, Xue C L, Zhao W M, Wang Q W, Dou L G, Du X, Meng Y X, Wang Y K, Gao Y H, Jia Z Y, Li W, Ji L L, Li F S, Zhang Z Y, Cui P, Xing D Y and Li S C 2024 Nat. Commun. 15 4784
[15] Zhuang J, Li J, Liu Y, Mu D, Yang M, Liu Y, Zhou W, Hao W, Zhong J and Du Y 2021 ACS Nano 15 14850
[16] Luttinger J M 1963 J. Math. Phys. 4 1154
[17] Barak G, Steinberg H, Pfeiffer L N, West K W, Glazman L, Von O F and Yacoby A 2010 Nat. Phys. 6 489
[18] Abrikosov A A and Ryzhkin I A 1978 Adv. Phys. 27 147
[19] Prigodin V N 1997 Synth. Met. 84 705
[20] Begum S, Fleurov V, Kagalovsky V and Yurkevich I V 2019 J. Phys.: Condens. Matter 31 425601
[21] Qin S, Kim T H, Zhang Y, Ouyang W, Weitering H H, Shih C K, Baddorf A P, Wu R and Li A P 2012 Nano Lett. 12 938
[22] Ahn J, Byun J, Koh H, Rotenberg E, Kevan S and Yeom H 2004 Phys. Rev. Lett. 93 106401
[23] Deng J, Huo D, Bai Y, Guo Y, Pan Z, Lu S, Cui P, Zhang Z and Zhang C 2020 Nano Lett. 20 8866
[24] Ni J, Bi X, Jiang Y, Li L and Lu J 2017 Nano Energy 34 356
[25] Wang A, HongW, Li L, Guo R, Xiang Y, Ye Y, Zou G, Hou H and Ji X 2022 Energy Storage Mater. 44 145
[26] Witting I T, Chasapis T C, Ricci F, Peters M, Heinz N A, Hautier G and Snyder G J 2019 Adv. Electron. Mater. 5 1800904
[27] He S, Bahrami A, Zhang X, Martínez I G, Lehmann S and Nielsch K 2022 Adv. Mater. Technol. 7 2100953
[28] Hirahara T, Fukui N, Shirasawa T, Yamada M, Aitani M, Miyazaki H, Matsunami M, Kimura S, Takahashi T, Hasegawa S and Kobayashi K 2013 Phys. Rev. Lett. 110 149901
[29] Sabater C, Gosalbez M D, Fernandez R J, Rodrigo J G, Untiedt C and Palacios J J 2013 Phys. Rev. Lett. 110 176802
[30] Drozdov I K, Alexandradinata A, Jeon S, Nadj P S, Ji H, Cava R J, Bernevig B A and Yazdani A 2014 Nat. Phys. 10 664
[31] Liu Z, Liu C X, Wu Y S, Duan W H, Liu F and Wu J 2011 Phys. Rev. Lett. 107 136805
[32] Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Gueron S, Yazdani A, Bernevig B A and Neupert T 2018 Nat. Phys. 14 1067
[33] Wada M, Murakami S, Freimuth F and Bihlmayer G 2011 Phys. Rev. B 83 121310
[34] Nagao T, Sadowski J T, Saito M, Yaginuma S, Fujikawa Y, Kogure T, Ohno T, Hasegawa Y, Hasegawa S and Sakurai T 2004 Phys. Rev. Lett. 93 105501
[35] Bollmann T R J, Van G R, Zandvliet H JWand Poelsema B 2012 Phys. Rev. Lett. 109 176102
[36] Kowalczyk P J, Mahapatra O, Le Ster M, Brown S A, Bian G, Wang X and Chiang T C 2017 Phys. Rev. B 96 205434
[37] Gao Q and Widom M 2013 Phys. Rev. B 88 144102
[38] Fang A, Adamo C, Jia S, Cava R J,Wu S C, Felser C and Kapitulnik A 2018 Sci. Adv. 4 0330
[39] Fuseya Y, Katsuno H, Behnia K and Kapitulnik A 2021 Nat. Phys. 17 1031
[40] Lu P X, Zhang M, Zou W J and Kong C 2017 J. Mater. Res. 32 2405
[41] Tian M, Wang J, Kumar N, Han T, Kobayashi Y, Liu Y, Mallouk T E and Chan M H W 2006 Nano Lett. 6 2773
[42] Brochard S, Artacho E, Custance O, Brihuega I, Baró A M, Soler J M and Gómez-Rodríguez J M 2002 Phys. Rev. B 66 205403
[43] Brun C, Cren T, Cherkez V, Debontridder F, Pons S, Fokin D, Tringides M C, Bozhko S, Ioffe L B, Altshuler B L and Roditchev D 2014 Nat. Phys. 10 444
[44] Horcas I, Fernandez R, Gomez-Rodriguez J M, Colchero J, Gomez H J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[45] Krogstrup P, Ziino N, Chang W, Albrecht S, Madsen M, Johnson E, Nygard J, Marcus C M and Jespersen T 2015 Nat. Mater. 14 400
[46] Zhao S, Fathololoumi S, Bevan K, Liu D, Kibria M, Li Q, Wang G, Guo H and Mi Z 2012 Nano Lett. 12 2877
[47] Li P, Xie K, Li L, Li X, Xia Y, Zhang R and Qin S 2022 Phys. Status Solidi B 259 2200095
[48] Li P, Xie K, Xia Y, Cai D and Qin S 2023 Chin. Phys. B 32 066101
[49] He L, Cheng G, Zhu Y and Park H S 2023 Nano Lett. 23 5779
[50] McCreary K, Pi K, Swartz A, Han W, Bao W, Lau C, Guinea F, Katsnelson M and Kawakami R 2010 Phys. Rev. B 81 115453
[51] Patel S B, Li C, Al-Mahboob A, Sadowski J T and Zhou G 2025 J. Am. Chem. Soc. 147 1656
[52] Gao C L, Qian D, Liu C H, Jia J F and Liu F 2013 Chin. Phys. B 22 067304
[53] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[54] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[55] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[56] Blöchl P E, Först C J and Schimpl J 2003 Bull. Mater. Sci 26 33
[57] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[58] Chandrasekaran N, Gann E, Jain N, Kumar A, Gopinathan S, Sadhanala A, Friend R H, Kumar A, McNeill C R and Kabra D 2016 ACS Appl. Mater. 8 20243
[59] Martens H 2006 Phys. Rev. Lett. 96 076603
[60] Dong C, Liu Y and Qi Y 2018 Acta Metall. Sin. 54 935
[61] Fogler M M, Teber S and Shklovskii B 2004 Phys. Rev. B 69 035413
[1] Tunable colossal negative magnetoresistance of topological semimetal EuB6 thin sheets
Ke Zhu(祝轲), Qi Qi(齐琦), Yaofeng Xie(谢耀锋), Lulu Pan(潘禄禄), Senhao Lv(吕森浩), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Lihong Bao(鲍丽宏), Ying Zhang(张颖), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(9): 097308.
[2] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[3] Characterization of antisite defects and in-gap states in antiferromagnetic MnSb2Te4
Junming Zhang(张峻铭), Ming Xi(席明), Yuchong Zhang(张羽翀), Hang Li(李航), Jiali Zhao(赵佳丽), Hechang Lei(雷和畅), Zhongxu Wei(魏忠旭), and Tian Qian(钱天). Chin. Phys. B, 2025, 34(7): 076801.
[4] Improved temperature localization by hollowing plasmonic nanofocusing cones
Jiaming Zhang(张家明) and Jinglai Duan(段敬来). Chin. Phys. B, 2025, 34(6): 066104.
[5] Surface solitonic charge distribution on 2D materials investigated using Kelvin probe force microscopy technique based on qplus atomic force microscopy
Rui Song(宋睿), Feng Hao(郝峰), Jie Yang(杨杰), Lifeng Yin(殷立峰), and Jian Shen(沈健). Chin. Phys. B, 2025, 34(5): 056802.
[6] Orbital angular momentum conversion of acoustic vortex beams via planar lattice coupling
Qingbang Han(韩庆邦), Zhipeng Liu(刘志鹏), Cheng Yin(殷澄), Simeng Wu(吴思梦), Yinlong Luo(罗寅龙), Zixin Yang(杨子鑫), Xiuyang Pang(庞修洋), Yiqiu Wang(王溢秋), Xuefen Kan(阚雪芬), Yuqiu Zhang(张雨秋), Qiang Yu(俞强), and Jian Wu(吴坚). Chin. Phys. B, 2024, 33(9): 094301.
[7] Surface evolution of thermoelectric material KCu4Se3 explored by scanning tunneling microscopy
Yumin Xia(夏玉敏), Ni Ma(马妮), Desheng Cai(蔡德胜), Yuzhou Liu(刘宇舟), Yitong Gu(谷易通), Gan Yu(于淦), Siyu Huo(霍思宇), Wenhui Pang(庞文慧), Chong Xiao(肖翀), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2024, 33(8): 086804.
[8] Superconducting state in Ba(1-x)SrxNi2As2 near the quantum critical point
Chengfeng Yu(余承峰), Zongyuan Zhang(张宗源), Linxing Song(宋林兴), Yanwei Wu(吴彦玮), Xiaoqiu Yuan(袁小秋), Jie Hou(侯杰), Yubing Tu(涂玉兵), Xingyuan Hou(侯兴元), Shiliang Li(李世亮), and Lei Shan(单磊). Chin. Phys. B, 2024, 33(6): 066802.
[9] Bimodal growth of Fe islands on graphene
Yi-Sheng Gu(顾翊晟), Qiao-Yan Yu(俞俏滟), Dang Liu(刘荡), Ji-Ce Sun(孙蓟策), Rui-Jun Xi(席瑞骏), Xing-Sen Chen(陈星森), Sha-Sha Xue(薛莎莎), Yi Zhang(章毅), Xian Du(杜宪), Xu-Hui Ning(宁旭辉), Hao Yang(杨浩), Dan-Dan Guan(管丹丹), Xiao-Xue Liu(刘晓雪), Liang Liu(刘亮), Yao-Yi Li(李耀义), Shi-Yong Wang(王世勇), Can-Hua Liu(刘灿华), Hao Zheng(郑浩), and Jin-Feng Jia(贾金锋). Chin. Phys. B, 2024, 33(6): 068104.
[10] Field induced Chern insulating states in twisted monolayer-bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[11] Revisit of the anisotropic vortex states of 2H-NbSe2 towards the zero-field limit
Fan Zhang(张凡), Xingyuan Hou(侯兴元), Yuxuan Jiang(姜宇轩), Zongyuan Zhang(张宗源), Yubing Tu(涂玉兵), Xiangde Zhu(朱相德), Genfu Chen(陈根富), and Lei Shan(单磊). Chin. Phys. B, 2024, 33(6): 067401.
[12] Interplay between topology and localization on superconducting circuits
Xin Guan(关欣), Bingyan Huo(霍炳燕), and Gang Chen(陈刚). Chin. Phys. B, 2024, 33(6): 060311.
[13] Dynamical localization in a non-Hermitian Floquet synthetic system
Han Ke(可汗), Jiaming Zhang(张嘉明), Liang Huo(霍良), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2024, 33(5): 050507.
[14] Diameter-dependent ultra-high thermoelectric performance of ZnO nanowires
Yinan Nie(聂祎楠), Guihua Tang(唐桂华), Yifei Li(李一斐), Min Zhang(张敏), and Xin Zhao(赵欣). Chin. Phys. B, 2024, 33(4): 047301.
[15] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
No Suggested Reading articles found!