Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097308    DOI: 10.1088/1674-1056/add5ca
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable colossal negative magnetoresistance of topological semimetal EuB6 thin sheets

Ke Zhu(祝轲)1,2,†, Qi Qi(齐琦)1,2,†, Yaofeng Xie(谢耀锋)1,2, Lulu Pan(潘禄禄)1, Senhao Lv(吕森浩)1, Guojing Hu(胡国静)1, Zhen Zhao(赵振)1, Guoyu Xian(冼国裕)3, Yechao Han(韩烨超)2, Lihong Bao(鲍丽宏)1,2,3, Ying Zhang(张颖)1,2, Xiao Lin(林晓)2, Hui Guo(郭辉)1,2, Haitao Yang(杨海涛)1,2,‡, and Hong-Jun Gao(高鸿钧)1,2,§
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  EuB$_{6}$, a magnetic topological semimetal, has attracted considerable attention in recent years due to its rich intriguing physical properties, including a colossal negative magnetoresistance (CNMR) ratio exceeding $-80%$, a topological phase transition and a predicted quantum anomalous Hall effect (QAHE) approaching the two-dimensional (2D) limit. Yet, studies of the influence of the dimensionality approaching 2D on the electronic transport properties of EuB$_{6}$ are still scarce. In this work, EuB$_{6}$ thin sheets with thicknesses ranging from 35 μm to 180 μm were successfully fabricated through careful mechanical polishing of high-quality EuB$_{6}$ single crystals. The reduced thickness, temperature and magnetic field have a strong influence on the electronic transport properties, including the CNMR and carrier concentration of EuB$_{6}$ thin sheets. As the thickness of EuB$_{6}$ thin sheets decreases from 180 μm to 35 μm, the magnetization transition temperature and the corresponding suppressing temperature of the Kondo effect decrease from 15.2 K to 10.9 K, while the CNMR ratio increases from $-87.2%$ to $-90.8%$. Furthermore, the weak antilocalization effect transits to a weak localization effect and the carrier concentration increases by 9.4% at 30 K in a 35 μm EuB$_{6}$ thin sheet compared to the value reported for a 180 μm thin sheet. Our findings demonstrate an obvious tunable effect of the reduced dimensionality on the transport properties of EuB$_{6}$ along with the temperature and magnetic field, which could provide a route to exploring the QAHE near the 2D limit in EuB$_{6}$ and other topological semimetals.
Keywords:  EuB$_{6}$ thin sheets      magnetic topological semimetal      negative magnetoresistance      Kondo effect      weak localization  
Received:  07 March 2025      Revised:  22 April 2025      Accepted manuscript online:  08 May 2025
PACS:  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1204100), the National Natural Science Foundation of China (Grant No. 62488201), the Chinese Academy of Sciences (Grant Nos. XDB33030000 and YSBR-053), and Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700).
Corresponding Authors:  Haitao Yang, Hong-Jun Gao     E-mail:  htyang@iphy.ac.cn;hjgao@iphy.ac.cn

Cite this article: 

Ke Zhu(祝轲), Qi Qi(齐琦), Yaofeng Xie(谢耀锋), Lulu Pan(潘禄禄), Senhao Lv(吕森浩), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Lihong Bao(鲍丽宏), Ying Zhang(张颖), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) Tunable colossal negative magnetoresistance of topological semimetal EuB6 thin sheets 2025 Chin. Phys. B 34 097308

[1] Wieder B J, Bradlyn B, Cano J, Wang Z J, Vergniory M G, Elcoro L, Soluyanov A A, Felser C, Neupert T, Regnault N and Bernevig B A 2022 Nat. Rev. Mater. 7 196
[2] He Q L, Hughes T L, Armitage N P, Tokura Y andWang K L 2022 Nat. Mater. 21 15
[3] Gilbert M J 2021 Commun. Phys. 4 70
[4] Gong J, Wang H, Ma X P, Zeng X Y, Lin J F, Han K, Wang Y T and Xia T L 2024 Chin. Phys. B 33 077302
[5] Lachman E O, Mogi M, Sarkar J, Uri A, Bagani K, Anahory Y, Myasoedov Y, HuberME, Tsukazaki A, Kawasaki M, Tokura Y and Zeldov E 2017 Npj Quantum Mater. 2 70
[6] Winnerlein M, Schreyeck S, Grauer S, Rosenberger S, Fijalkowski K M, Gould C, Brunner K and Molenkamp L W 2017 Phys. Rev. Mater. 1 011201
[7] Yu R, ZhangW, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[8] Chang C Z, Zhang J, Feng X, et al. 2013 Science 340 167
[9] Zhao Y F, Zhang R X, Mei R B, Zhou L J, Yi H M, Zhang Y Q, Yu J B, Xiao R, Wang K, Samarth N, Chan M H W, Liu C X and Chang C Z 2020 Nature 588 419
[10] Feng X, Feng Y, Wang J, Ou Y B, Hao Z Q, Liu C, Zhang Z C, Zhang L G, Lin C J, Liao J, Li Y Q, Wang L L, Ji S H, Chen X, Ma X C, Zhang S C, Wang Y Y, He K and Xue Q K 2016 Adv. Mater. 28 6386
[11] Ji Y C, Liu Z, Zhang P, Li L, Qi S F, Chen P, Zhang Y, Yao Q, Liu Z K, Wang K L, Qiao Z H and Kou X F 2022 ACS Nano 16 1134
[12] Zhao Y F, Zhang R X, Sun Z T, Zhou L J, Zhuo D Y, Yan Z J, Yi H M, Wang K, Chan M H W, Liu C X, Law K T and Chang C Z 2024 Adv. Mater. 36 2310249
[13] Ou Y B, Feng Y, Feng X, Hao Z Q, Zhang L G, Liu C, Wang Y Y, He K, Ma X C and Xue Q K 2016 Chin. Phys. B 25 087307
[14] Li W, Claassen M, Chang C Z, Moritz B, Jia T, Zhang C, Rebec S, Lee J J, Hashimoto M, Lu D H, Moore R G, Moodera J S, Devereaux T P and Shen Z X 2016 Sci. Rep. 6 32732
[15] Yao Q, Ji Y C, Chen P, He Q L and Kou X F 2021 Adv. Phys. X 6 1870560
[16] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[17] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[18] Fang C, Weng H, Dai X and Fang Z 2016 Chin. Phys. B 25 117106
[19] Liu E, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125
[20] Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[21] Feng B J, Zhang R W, Feng Y, Fu B T, Wu S L, Miyamoto K, He S L, Chen L, Wu K H, Shimada K, Okuda T and Yao Y G 2019 Phys. Rev. Lett. 123 116401
[22] Muechler L, Liu E K, Gayles J, Xu Q N, Felser C and Sun Y 2020 Phys. Rev. B 101 115106
[23] Zhang Z, You J Y, Ma X Y, Gu B and Su G 2021 Phys. Rev. B 103 014410
[24] Gao S Y, Xu S, Li H, Yi C J, Nie S M, Rao Z C, Wang H, Hu Q X, Chen X Z, Fan W H, Huang J R, Huang Y B, Pryds N, Shi M, Wang Z J, Shi Y G, Xia T L, Qian T and Ding H 2021 Phys. Rev. X 11 021016
[25] Nie S, Sun Y, Prinz F B, Wang Z, Weng H, Fang Z and Dai X 2020 Phys. Rev. Lett. 124 076403
[26] Süllow S, Prasad I, Bogdanovich S, Aronson M C, Sarrao J L and Fisk Z 2000 J. Appl. Phys. 87 5591
[27] Pan L L, Wang Y H, Ding X, Hu G J, Guo H, Lv S H, Xian G Y, Qi Q, Zhu K, Han Y C, Lei M Y A, Li Z L, Bao L H, Zhang Y, Lin X, Zhu S Y, Peng R, Yang H T and Gao H J 2024 Appl. Phys. Lett. 125 243101
[28] Shen J, Gao J, Yi C, Li M, Zhang S, Yang J, Wang B, Zhou M, Huang R, Wei H, Yang H, Shi Y, Xu X, Gao H J, Shen B, Li G, Wang Z and Liu E 2023 The Innovation 4 100399
[29] Fisk Z, Johnston D C, Cornut B, Molnar S V, Oseroff S and Calvo R 1979 J. Appl. Phys. 50 1911
[30] Snow C S, Cooper S L, Young D P, Fisk Z, Comment A and Ansermet J P 2001 Phys. Rev. B 64 174412
[31] Süllow S, Prasad I, Aronson M C, Sarrao J L, Fisk Z, Hristova D, Lacerda A H, Hundley M F, Vigliante A and Gibbs D 1998 Phys. Rev. B 57 5860
[32] Liu W L, Zhang X, Nie S M, et al. 2022 Phys. Rev. Lett. 129 166402
[33] Long G, Xu S, Cai X, Wu Z, Han T, Lin J, Cheng C, Cai Y, Wang X and Wang N 2018 Nanotechnology 29 035204
[34] Liu H, Xue Y, Shi J A, Guzman R A, Zhang P, Zhou Z, He Y, Bian C, Wu L, Ma R, Chen J, Yan J, Yang H, Shen C M, Zhou W, Bao L and Gao H J 2019 Nano Lett. 19 8572
[35] Kumar K, Kumar Y and Awana V P S 2023 J. Mater. Sci.: Mater. El. 34 2302
[36] Lu H Z and Shen S Q 2014 Proc. SPIE 9167 91672E
[1] Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals
Yaofeng Xie(谢耀锋), Senhao Lv(吕森浩), Qi Qi(齐琦), Guojing Hu(胡国静), Ke Zhu(祝轲), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Ruwen Wang(王汝文), Chenyu Bai(白晨宇), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(8): 087303.
[2] In-plane negative magnetoresistance and quantum oscillations in van der Waals antiferromagnet DyTe3
Qi Qi(齐琦), Senhao Lv(吕森浩), Ke Zhu(祝轲), Yaofeng Xie(谢耀锋), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Yang Yang(杨洋), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077305.
[3] Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2
Da-Liang Guo(郭达良), and Huan Li(黎欢). Chin. Phys. B, 2025, 34(6): 067102.
[4] Crystal structure, magnetic properties, and tunable Kondo effect in a new compound Nd5ScSb12
Yi-Ran Li(李祎冉), Na Li(李娜), Ping Su(苏平), Hui Liang(梁慧), Kai-Yuan Hu(胡开源), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Xia Zhao(赵霞), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎). Chin. Phys. B, 2025, 34(6): 067502.
[5] Chemical pressure manipulation of ferromagnetism in magnetic semiconductor Ba(Zn,Mn,Cu)2As2
Xueqin Zhao(赵雪芹), Jinou Dong(董金瓯), Lingfeng Xie(谢玲凤), Xun Pan(潘洵), Haoyuan Tang(唐浩原), Zhicheng Xu(徐之程), and Fanlong Ning(宁凡龙). Chin. Phys. B, 2025, 34(10): 107510.
[6] Localization effect in single crystal of RuAs2
Zhe-Kai Yi(易哲铠), Qi Liu(刘琪), Shuang-Kui Guang(光双魁), Sheng Xu(徐升), Xiao-Yu Yue(岳小宇), Hui Liang(梁慧), Na Li(李娜), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Peng Cheng(程鹏), Tian-Long Xia(夏天龙), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎). Chin. Phys. B, 2024, 33(4): 047501.
[7] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[8] Observation of spin-glass behavior in 1111-type magnetic semiconductor (La, Ba)(Zn, Mn)SbO
Xueqin Zhao(赵雪芹), Jinou Dong(董金瓯), Rufei Zhang(张茹菲), Qiaolin Yang(杨巧林), Lingfeng Xie(谢玲凤), Licheng Fu(傅立承), Yilun Gu(顾轶伦), Xun Pan(潘洵), and Fanlong Ning(宁凡龙). Chin. Phys. B, 2023, 32(12): 127502.
[9] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[10] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[11] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[12] Kondo screening cloud in a superconductor with mixed s-wave and p-wave pairing states
Zhen-Zhen Huang(黄真真), Xiong-Tao Peng(彭雄涛), Wan-Sheng Wang(王万胜), and Jin-Hua Sun(孙金华). Chin. Phys. B, 2022, 31(10): 107101.
[13] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[14] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
[15] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
No Suggested Reading articles found!