| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable colossal negative magnetoresistance of topological semimetal EuB6 thin sheets |
| Ke Zhu(祝轲)1,2,†, Qi Qi(齐琦)1,2,†, Yaofeng Xie(谢耀锋)1,2, Lulu Pan(潘禄禄)1, Senhao Lv(吕森浩)1, Guojing Hu(胡国静)1, Zhen Zhao(赵振)1, Guoyu Xian(冼国裕)3, Yechao Han(韩烨超)2, Lihong Bao(鲍丽宏)1,2,3, Ying Zhang(张颖)1,2, Xiao Lin(林晓)2, Hui Guo(郭辉)1,2, Haitao Yang(杨海涛)1,2,‡, and Hong-Jun Gao(高鸿钧)1,2,§ |
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
|
|
Abstract EuB$_{6}$, a magnetic topological semimetal, has attracted considerable attention in recent years due to its rich intriguing physical properties, including a colossal negative magnetoresistance (CNMR) ratio exceeding $-80%$, a topological phase transition and a predicted quantum anomalous Hall effect (QAHE) approaching the two-dimensional (2D) limit. Yet, studies of the influence of the dimensionality approaching 2D on the electronic transport properties of EuB$_{6}$ are still scarce. In this work, EuB$_{6}$ thin sheets with thicknesses ranging from 35 μm to 180 μm were successfully fabricated through careful mechanical polishing of high-quality EuB$_{6}$ single crystals. The reduced thickness, temperature and magnetic field have a strong influence on the electronic transport properties, including the CNMR and carrier concentration of EuB$_{6}$ thin sheets. As the thickness of EuB$_{6}$ thin sheets decreases from 180 μm to 35 μm, the magnetization transition temperature and the corresponding suppressing temperature of the Kondo effect decrease from 15.2 K to 10.9 K, while the CNMR ratio increases from $-87.2%$ to $-90.8%$. Furthermore, the weak antilocalization effect transits to a weak localization effect and the carrier concentration increases by 9.4% at 30 K in a 35 μm EuB$_{6}$ thin sheet compared to the value reported for a 180 μm thin sheet. Our findings demonstrate an obvious tunable effect of the reduced dimensionality on the transport properties of EuB$_{6}$ along with the temperature and magnetic field, which could provide a route to exploring the QAHE near the 2D limit in EuB$_{6}$ and other topological semimetals.
|
Received: 07 March 2025
Revised: 22 April 2025
Accepted manuscript online: 08 May 2025
|
|
PACS:
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1204100), the National Natural Science Foundation of China (Grant No. 62488201), the Chinese Academy of Sciences (Grant Nos. XDB33030000 and YSBR-053), and Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700). |
Corresponding Authors:
Haitao Yang, Hong-Jun Gao
E-mail: htyang@iphy.ac.cn;hjgao@iphy.ac.cn
|
Cite this article:
Ke Zhu(祝轲), Qi Qi(齐琦), Yaofeng Xie(谢耀锋), Lulu Pan(潘禄禄), Senhao Lv(吕森浩), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Lihong Bao(鲍丽宏), Ying Zhang(张颖), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) Tunable colossal negative magnetoresistance of topological semimetal EuB6 thin sheets 2025 Chin. Phys. B 34 097308
|
[1] Wieder B J, Bradlyn B, Cano J, Wang Z J, Vergniory M G, Elcoro L, Soluyanov A A, Felser C, Neupert T, Regnault N and Bernevig B A 2022 Nat. Rev. Mater. 7 196 [2] He Q L, Hughes T L, Armitage N P, Tokura Y andWang K L 2022 Nat. Mater. 21 15 [3] Gilbert M J 2021 Commun. Phys. 4 70 [4] Gong J, Wang H, Ma X P, Zeng X Y, Lin J F, Han K, Wang Y T and Xia T L 2024 Chin. Phys. B 33 077302 [5] Lachman E O, Mogi M, Sarkar J, Uri A, Bagani K, Anahory Y, Myasoedov Y, HuberME, Tsukazaki A, Kawasaki M, Tokura Y and Zeldov E 2017 Npj Quantum Mater. 2 70 [6] Winnerlein M, Schreyeck S, Grauer S, Rosenberger S, Fijalkowski K M, Gould C, Brunner K and Molenkamp L W 2017 Phys. Rev. Mater. 1 011201 [7] Yu R, ZhangW, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61 [8] Chang C Z, Zhang J, Feng X, et al. 2013 Science 340 167 [9] Zhao Y F, Zhang R X, Mei R B, Zhou L J, Yi H M, Zhang Y Q, Yu J B, Xiao R, Wang K, Samarth N, Chan M H W, Liu C X and Chang C Z 2020 Nature 588 419 [10] Feng X, Feng Y, Wang J, Ou Y B, Hao Z Q, Liu C, Zhang Z C, Zhang L G, Lin C J, Liao J, Li Y Q, Wang L L, Ji S H, Chen X, Ma X C, Zhang S C, Wang Y Y, He K and Xue Q K 2016 Adv. Mater. 28 6386 [11] Ji Y C, Liu Z, Zhang P, Li L, Qi S F, Chen P, Zhang Y, Yao Q, Liu Z K, Wang K L, Qiao Z H and Kou X F 2022 ACS Nano 16 1134 [12] Zhao Y F, Zhang R X, Sun Z T, Zhou L J, Zhuo D Y, Yan Z J, Yi H M, Wang K, Chan M H W, Liu C X, Law K T and Chang C Z 2024 Adv. Mater. 36 2310249 [13] Ou Y B, Feng Y, Feng X, Hao Z Q, Zhang L G, Liu C, Wang Y Y, He K, Ma X C and Xue Q K 2016 Chin. Phys. B 25 087307 [14] Li W, Claassen M, Chang C Z, Moritz B, Jia T, Zhang C, Rebec S, Lee J J, Hashimoto M, Lu D H, Moore R G, Moodera J S, Devereaux T P and Shen Z X 2016 Sci. Rep. 6 32732 [15] Yao Q, Ji Y C, Chen P, He Q L and Kou X F 2021 Adv. Phys. X 6 1870560 [16] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895 [17] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 [18] Fang C, Weng H, Dai X and Fang Z 2016 Chin. Phys. B 25 117106 [19] Liu E, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125 [20] Ye L D, Kang M G, Liu J W, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 [21] Feng B J, Zhang R W, Feng Y, Fu B T, Wu S L, Miyamoto K, He S L, Chen L, Wu K H, Shimada K, Okuda T and Yao Y G 2019 Phys. Rev. Lett. 123 116401 [22] Muechler L, Liu E K, Gayles J, Xu Q N, Felser C and Sun Y 2020 Phys. Rev. B 101 115106 [23] Zhang Z, You J Y, Ma X Y, Gu B and Su G 2021 Phys. Rev. B 103 014410 [24] Gao S Y, Xu S, Li H, Yi C J, Nie S M, Rao Z C, Wang H, Hu Q X, Chen X Z, Fan W H, Huang J R, Huang Y B, Pryds N, Shi M, Wang Z J, Shi Y G, Xia T L, Qian T and Ding H 2021 Phys. Rev. X 11 021016 [25] Nie S, Sun Y, Prinz F B, Wang Z, Weng H, Fang Z and Dai X 2020 Phys. Rev. Lett. 124 076403 [26] Süllow S, Prasad I, Bogdanovich S, Aronson M C, Sarrao J L and Fisk Z 2000 J. Appl. Phys. 87 5591 [27] Pan L L, Wang Y H, Ding X, Hu G J, Guo H, Lv S H, Xian G Y, Qi Q, Zhu K, Han Y C, Lei M Y A, Li Z L, Bao L H, Zhang Y, Lin X, Zhu S Y, Peng R, Yang H T and Gao H J 2024 Appl. Phys. Lett. 125 243101 [28] Shen J, Gao J, Yi C, Li M, Zhang S, Yang J, Wang B, Zhou M, Huang R, Wei H, Yang H, Shi Y, Xu X, Gao H J, Shen B, Li G, Wang Z and Liu E 2023 The Innovation 4 100399 [29] Fisk Z, Johnston D C, Cornut B, Molnar S V, Oseroff S and Calvo R 1979 J. Appl. Phys. 50 1911 [30] Snow C S, Cooper S L, Young D P, Fisk Z, Comment A and Ansermet J P 2001 Phys. Rev. B 64 174412 [31] Süllow S, Prasad I, Aronson M C, Sarrao J L, Fisk Z, Hristova D, Lacerda A H, Hundley M F, Vigliante A and Gibbs D 1998 Phys. Rev. B 57 5860 [32] Liu W L, Zhang X, Nie S M, et al. 2022 Phys. Rev. Lett. 129 166402 [33] Long G, Xu S, Cai X, Wu Z, Han T, Lin J, Cheng C, Cai Y, Wang X and Wang N 2018 Nanotechnology 29 035204 [34] Liu H, Xue Y, Shi J A, Guzman R A, Zhang P, Zhou Z, He Y, Bian C, Wu L, Ma R, Chen J, Yan J, Yang H, Shen C M, Zhou W, Bao L and Gao H J 2019 Nano Lett. 19 8572 [35] Kumar K, Kumar Y and Awana V P S 2023 J. Mater. Sci.: Mater. El. 34 2302 [36] Lu H Z and Shen S Q 2014 Proc. SPIE 9167 91672E |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|