Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 066104    DOI: 10.1088/1674-1056/adc409
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Improved temperature localization by hollowing plasmonic nanofocusing cones

Jiaming Zhang(张家明)1,2,† and Jinglai Duan(段敬来)1,2,3,‡
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
2 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
Abstract  The utilization of nanostructures with diverse geometric shapes is essential for manipulating the energy of electromagnetic (EM) fields and achieving various applications in optics, such as nanofocusing. The plasmonic cone structure is highly representative in the field of nanofocusing applications, effectively guiding EM field energy to the tip of the cone and resulting in high local electric field and temperature effects. In certain chemical catalytic applications, an elevated temperature and a larger surface area may be required to enhance catalysis reactions. Here, we propose a hollow gold nanocone structure that can achieve higher temperature both at the tip and within its hollow region under the excitation of an EM field. Through rigorous finite element method (FEM) simulations, we investigated the EM field and temperature distribution of the hollow cone at various cone angles and identified those angles that yield higher local temperatures. Additionally, the analysis of the scattering cross section of hollow cones reveals that the presence of electric dipole component of the EM field corresponds to Fabry-Perot-like (FP-like) resonance in short wavelengths (600 nm-1200 nm), which predominantly contributes to the temperature localization. These findings provide novel insights into utilizing conical nanostructures for applications such as catalysis.
Keywords:  nanofocusing      hollow nanocone      temperature localization  
Received:  06 February 2025      Revised:  16 March 2025      Accepted manuscript online:  24 March 2025
PACS:  61.46.-w (Structure of nanoscale materials)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the Science and Technology Department of Gansu Province, China (Grant No. 24RCKB011) and the National Natural Science Foundation of China (Grant No. 12325511).
Corresponding Authors:  Jiaming Zhang, Jinglai Duan     E-mail:  zhangjiaming@impcas.ac.cn;j.duan@impcas.ac.cn

Cite this article: 

Jiaming Zhang(张家明) and Jinglai Duan(段敬来) Improved temperature localization by hollowing plasmonic nanofocusing cones 2025 Chin. Phys. B 34 066104

[1] Zhang Y, Zhao Q, Liao Z M and Yu D P 2009 Chin. Phys. B 18 4865
[2] Li J F and Li Z Y 2014 Chin. Phys. B 23 047305
[3] Shi X S, Luo Z Q, Li Z Y and Yu H K 2023 Chin. Phys. B 32 084204
[4] Gramotnev D K and Bozhevolnyi S I 2014 Nat. Photon. 8 13
[5] Neacsu C C, Berweger S, Olmon R L, Saraf L V, Ropers C and Raschke M B 2010 Nano Lett. 10 592
[6] Berweger S, Atkin J M, Olmon R L and Raschke M B 2010 J. Phys. Chem. Lett. 1 3427
[7] Berweger S, Atkin J M, Olmon R L and Raschke M B 2012 J. Phys. Chem. Lett. 3 945
[8] Verhagen E, Polman A and Kuipers L K 2008 Opt. Express 16 45
[9] Kuang D F, Dong L Q and Cao Y Y 2017 Plasmonics 12 685
[10] Wongpanya K and Pijitrojana W 2024 Opt. Express 32 677
[11] Cui S Y, Su G, Ren X H,Wu X C, Peng L and Fu Y Q 2024 Plasmonics 19 1395
[12] Stockman M I 2004 Phys. Rev. Lett. 93 137404
[13] Cunha J, Guo T L, Koya A N, Toma A, Prato M, Valle G D, Alabastri A and Zaccaria R P 2020 Adv. Opt. Mater. 8 2000568
[14] Cunha J, Alabastri A and Zaccaria R P 2022 Adv. Opt. Mater. 10 2200746
[15] Zhao Z H, Xu G H, Zhang J M, Zhang Y L, Liu J, Lyu S B, Cheng H W, Lei D Y and Duan J L 2020 J. Mater. Chem. C 8 9293
[16] Yang S Y, Huang R, Wang W T, Zhang J M, Liu J, Chen Y H, Zhang S C, Zhang Y L and Duan J L 2023 Adv. Opt. Mater. 11 2300837
[17] Rakić A D, Djurišić A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271
[18] “COMSOL Multiphysics®.”, https://www.comsol.com, COMSOL AB
[19] Alaee R, Rockstuhl C and Fernandez-Corbaton I 2018 Opt. Commun. 407 17
[20] Evlyukhin A B and Tuz V R 2023 Phys. Rev. B 107 155425
[21] Tuccio S, Razzari L, Alabastri A, Toma A, Liberale C, Angelis F, Candeloro P, Das G, Giugni A, Fabrizio E and Zaccaria R P 2014 Opt. Lett. 39 571
[22] Yang B P, Liu K, Li H J, et al. 2022 J. Am. Chem. Soc. 144 3039
[1] Optimization of wide frequency range 6H-SiC MEMS chips for a fiber optic Fabry-Perot accelerometer
Mariano Mahissi(马依思·马里亚诺), Xinli Ma(马新莉), Weiming Cai(蔡卫明), Xianmin Zhang(章献民), and Michel Dossou(多苏·米歇尔). Chin. Phys. B, 2025, 34(7): 074203.
[2] Positive and negative electrocaloric effects
Hongrui Xu(徐洪瑞) and Jiping Huang(黄吉平). Chin. Phys. B, 2025, 34(6): 067702.
[3] Design and preparation of amorphous carbon nanotubes reinforced copper
Xiaona Ren(任晓娜), Wentao Wu(吴文涛), Zhipei Chen(陈志培), and Changchun Ge(葛昌纯). Chin. Phys. B, 2025, 34(4): 046107.
[4] Effect of copper/tungsten heterophase interface on radiation resistance: Insights from atomistic simulations
Wen Chen(陈文), Min Li(李敏), Bao-Qin Fu(付宝勤), Tun Chen(陈暾), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2025, 34(4): 046108.
[5] Liquid crystal droplets formation and stabilization during phase transition process
Xia Meng(孟霞), Jiayao Ye(叶家耀), Ao Li(李澳), Xudong Zhu(朱徐栋), Zhaoyan Yang(杨朝雁), Lei Wang(王磊), Bingxiang Li(李炳祥), and Yanqing Lu(陆延青). Chin. Phys. B, 2024, 33(11): 116101.
[6] A historical overview of nano-optics: From near-field optics to plasmonics
Miao-Yi Deng(邓妙怡), and Xing Zhu(朱星). Chin. Phys. B, 2024, 33(5): 050703.
[7] General three-dimensional thermal illusion metamaterials
Tianfeng Liu(刘天丰), Zhaochen Wang(王兆宸), Zhan Zhu(朱展), and Run Hu(胡润). Chin. Phys. B, 2024, 33(4): 044401.
[8] Effective dynamics for a spin-1/2 particle constrained to a curved layer with inhomogeneous thickness
Guo-Hua Liang(梁国华) and Pei-Lin Yin(尹佩林). Chin. Phys. B, 2024, 33(2): 020201.
[9] Enhanced mechanical and thermal properties of two-dimensional SiC and GeC with temperature and size dependence
Lei Huang(黄磊), Kai Ren(任凯), Huanping Zhang(张焕萍), and Huasong Qin(覃华松). Chin. Phys. B, 2023, 32(7): 076103.
[10] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S. Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[11] Doping-enhanced robustness of anomaly-related magnetoresistance in WTe2±α flakes
Jianchao Meng(孟建超), Xinxiang Chen(陈鑫祥), Tingna Shao(邵婷娜), Mingrui Liu(刘明睿), Weimin Jiang(姜伟民), Zitao Zhang(张子涛), Changmin Xiong(熊昌民), Ruifen Dou(窦瑞芬), and Jiacai Nie(聂家财). Chin. Phys. B, 2023, 32(4): 047502.
[12] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[13] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
No Suggested Reading articles found!