|
|
Dynamical localization in a non-Hermitian Floquet synthetic system |
Han Ke(可汗)1, Jiaming Zhang(张嘉明)1, Liang Huo(霍良)2, and Wen-Lei Zhao(赵文垒)1,† |
1 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China; 2 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China |
|
|
Abstract We investigate the non-Hermitian effects on quantum diffusion in a kicked rotor model where the complex kicking potential is quasi-periodically modulated in the time domain. The synthetic space with arbitrary dimension can be created by incorporating incommensurate frequencies in the quasi-periodical modulation. In the Hermitian case, strong kicking induces the chaotic diffusion in the four-dimension momentum space characterized by linear growth of mean energy. We find that the quantum coherence in deep non-Hermitian regime can effectively suppress the chaotic diffusion and hence result in the emergence of dynamical localization. Moreover, the extent of dynamical localization is dramatically enhanced by increasing the non-Hermitian parameter. Interestingly, the quasi-energies become complex when the non-Hermitian parameter exceeds a certain threshold value. The quantum state will finally evolve to a quasi-eigenstate for which the imaginary part of its quasi-energy is large most. The exponential localization length decreases with the increase of the non-Hermitian parameter, unveiling the underlying mechanism of the enhancement of the dynamical localization by non-Hermiticity.
|
Received: 19 February 2024
Revised: 20 March 2024
Accepted manuscript online: 22 March 2024
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Mt
|
(Quantum chaos; semiclassical methods)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12065009 and 12365002) and the Science and Technology Planning Project of Jiangxi Province of China (Grant Nos. 20224ACB201006 and 20224BAB201023). |
Corresponding Authors:
Wen-Lei Zhao
E-mail: wlzhao@jxust.edu.cn
|
Cite this article:
Han Ke(可汗), Jiaming Zhang(张嘉明), Liang Huo(霍良), and Wen-Lei Zhao(赵文垒) Dynamical localization in a non-Hermitian Floquet synthetic system 2024 Chin. Phys. B 33 050507
|
[1] Izrailev F M 1990 Phys. Rep. 196 299
[2] Santhanam M S, Paul S and Kannan J B 2022 Phys. Rep. 956 1
[3] Kukuljan I, Grozdanov S and Prosen T 2017 Phys. Rev. B 96 060301
[4] Chaudhury S, Smith A, Anderson B E, et al. 2009 Nature 461 768
[5] Kenfack A, Gong J and Pattanayak A K 2008 Phys. Rev. Lett. 100 044104
[6] Gong J and Brumer P 2002 Phys. Rev. Lett. 88 203001
[7] Gong J and Brumer P 2001 Phys. Rev. Lett. 86 1741
[8] Tomsovic S, Urbina J D and Richter K 2023 Phys. Rev. E 108 044202
[9] Benenti G, Casati G, Montangero S, et al. 2001 Phys. Rev. Lett. 87 227901
[10] Lee J W and Shepelyansky D L 2005 Phys. Rev. E 71 056202
[11] Song P H and Shepelyansky D L 2001 Phys. Rev. Lett. 86 2162
[12] Benenti G, Casati G, Montangero S, et al. 2003 Phys. Rev. A 67 052312
[13] Giannakis D, Ourmazd A, Pfeffer P, et al. 2022 Phys. Rev. A 105 052404
[14] Wang J, Benenti G, Casati G, et al. 2021 Phys. Rev. E 103 L030201
[15] Cohen D 1991 Phys. Rev. A 44 2292
[16] Adachi S, Toda M and Ikeda K 1988 Phys. Rev. Lett. 61 659
[17] Toda M, Adachi S and Ikeda K 1989 Prog. Theor. Phys. 98 323
[18] Adachi S, Toda M and Ikeda K 1988 Phys. Rev. Lett. 61 655
[19] Yang Y B and Wang W G 2015 Chin. Phys. Lett. 32 030301
[20] Ping W, Qiang Z and Wang W G 2010 Chin. Phys. Lett. 27 080301
[21] Zhang S H, Jie Q L and Zhuo W 2009 Commun. Theor. Phys. 52 221
[22] Zhao W L and Jie Q 2020 Chin. Phys. B 29 080302
[23] Casati G 1979 LNP 93
[24] Frahm K M and Shepelyansky D L 2009 Phys. Rev. E 80 016210
[25] Guarneri I, Casati G and Karle V 2014 Phys. Rev. Lett. 113 174101
[26] Suntajs J, Prosen T and Vidmar L 2023 Phys. Rev. B 107 064205
[27] Ali T, Bhattacharyya A, Haque S S, et al. 2020 Phys. Rev. D 101 026021
[28] Bera S, Lokesh K Y V and Banerjee S 2022 Phys. Rev. Lett. 128 115302
[29] Rozenbaum E B, Ganeshan S and Galitski V 2019 Phys. Rev. B 100 035112
[30] Borgonovi F, Izrailev F M, Santos L F, et al. 2016 Phys. Rep. 626 1
[31] Srednicki M 1994 Phys. Rev. E 50 888
[32] Bertini B, Kos P and Prosen T 2019 Phys. Rev. X 9 021033
[33] Wang X, Ghose S, Sanders B C, et al. 2004 Phys. Rev. E 70 016217
[34] Lantagne-Hurtubise É, Plugge S, Can O, et al. 2020 Phys. Rev. Res. 2 013254
[35] Georgeot B and Shepelyansky D L 2000 Phys. Rev. E 62 3504
[36] Lévi B, Georgeot B and Shepelyansky D L 2003 Phys. Rev. E 67 046220
[37] Miessen A, Ollitrault P J, Tacchino F, et al. 2023 Nat. Comput. Sci. 3 25
[38] Kharkov Y A, Sotskov V E, Karazeev A A, et al. 2020 Phys. Rev. B 101 064406
[39] Hainaut C, Manai I, Clement J F, ′ et al. 2018 Nat. Commun. 9 1382
[40] Lopez M, Clément J F, Lemarié G, et al. 2013 New J. Phys. 15 065013
[41] Taddia L, Cornfeld E, Rossini D, et al. 2017 Phys. Rev. Lett. 118 230402
[42] Ma N and Gong J 2022 Phys. Rev. Res. 4 013234
[43] Hainaut C, Fang P, Ranǫon A, et al. 2018 Phys. Rev. Lett. 121 134101
[44] Naji J, Jafari R, Zhou L, et al. 2022 Phys. Rev. B 106 094314
[45] Else D V, Bauer B and Nayak C 2016 Phys. Rev. Lett. 117 090402
[46] Nurwantoro P, Bomantara R W and Gong J 2019 Phys. Rev. B 100 214311
[47] Casati G, Guarneri I and Shepelyansky D L 1989 Phys. Rev. Lett. 62 345
[48] Shepelyansky D L 1983 Physica D 8 208
[49] Ermann L and Shepelyansky D L 2014 J. Phys. A: Math. Theor. 47 335101
[50] Zhao W L and Liu J 2023 arXiv:2305.12150[quant-ph]
[51] Zhao W and Zhang H 2022 Symmetry 15 113
[52] Wang W Y and Zhao W L 2021 J. Phys.: Condens. Matter 34 025403
[53] Huang K Q, Zhao W L and Li Z 2021 Phys. Rev. A 104 052405
[54] Huang K, Wang J, Zhao W L, et al. 2021 J. Phys.: Condens. Matter 33 055402
[55] Zhao W L and Liu J 2023 arXiv:2307.00462[quant-ph]
[56] Huo L, Ke H and Zhao W L 2024 arXiv:2401.11059[quant-ph] |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|