Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050507    DOI: 10.1088/1674-1056/ad36bb
RAPID COMMUNICATION Prev   Next  

Dynamical localization in a non-Hermitian Floquet synthetic system

Han Ke(可汗)1, Jiaming Zhang(张嘉明)1, Liang Huo(霍良)2, and Wen-Lei Zhao(赵文垒)1,†
1 School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China;
2 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
Abstract  We investigate the non-Hermitian effects on quantum diffusion in a kicked rotor model where the complex kicking potential is quasi-periodically modulated in the time domain. The synthetic space with arbitrary dimension can be created by incorporating incommensurate frequencies in the quasi-periodical modulation. In the Hermitian case, strong kicking induces the chaotic diffusion in the four-dimension momentum space characterized by linear growth of mean energy. We find that the quantum coherence in deep non-Hermitian regime can effectively suppress the chaotic diffusion and hence result in the emergence of dynamical localization. Moreover, the extent of dynamical localization is dramatically enhanced by increasing the non-Hermitian parameter. Interestingly, the quasi-energies become complex when the non-Hermitian parameter exceeds a certain threshold value. The quantum state will finally evolve to a quasi-eigenstate for which the imaginary part of its quasi-energy is large most. The exponential localization length decreases with the increase of the non-Hermitian parameter, unveiling the underlying mechanism of the enhancement of the dynamical localization by non-Hermiticity.
Keywords:  Floquet system      non-Hermitian physics      dynamical localization  
Received:  19 February 2024      Revised:  20 March 2024      Accepted manuscript online:  22 March 2024
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Mt (Quantum chaos; semiclassical methods)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12065009 and 12365002) and the Science and Technology Planning Project of Jiangxi Province of China (Grant Nos. 20224ACB201006 and 20224BAB201023).
Corresponding Authors:  Wen-Lei Zhao     E-mail:  wlzhao@jxust.edu.cn

Cite this article: 

Han Ke(可汗), Jiaming Zhang(张嘉明), Liang Huo(霍良), and Wen-Lei Zhao(赵文垒) Dynamical localization in a non-Hermitian Floquet synthetic system 2024 Chin. Phys. B 33 050507

[1] Izrailev F M 1990 Phys. Rep. 196 299
[2] Santhanam M S, Paul S and Kannan J B 2022 Phys. Rep. 956 1
[3] Kukuljan I, Grozdanov S and Prosen T 2017 Phys. Rev. B 96 060301
[4] Chaudhury S, Smith A, Anderson B E, et al. 2009 Nature 461 768
[5] Kenfack A, Gong J and Pattanayak A K 2008 Phys. Rev. Lett. 100 044104
[6] Gong J and Brumer P 2002 Phys. Rev. Lett. 88 203001
[7] Gong J and Brumer P 2001 Phys. Rev. Lett. 86 1741
[8] Tomsovic S, Urbina J D and Richter K 2023 Phys. Rev. E 108 044202
[9] Benenti G, Casati G, Montangero S, et al. 2001 Phys. Rev. Lett. 87 227901
[10] Lee J W and Shepelyansky D L 2005 Phys. Rev. E 71 056202
[11] Song P H and Shepelyansky D L 2001 Phys. Rev. Lett. 86 2162
[12] Benenti G, Casati G, Montangero S, et al. 2003 Phys. Rev. A 67 052312
[13] Giannakis D, Ourmazd A, Pfeffer P, et al. 2022 Phys. Rev. A 105 052404
[14] Wang J, Benenti G, Casati G, et al. 2021 Phys. Rev. E 103 L030201
[15] Cohen D 1991 Phys. Rev. A 44 2292
[16] Adachi S, Toda M and Ikeda K 1988 Phys. Rev. Lett. 61 659
[17] Toda M, Adachi S and Ikeda K 1989 Prog. Theor. Phys. 98 323
[18] Adachi S, Toda M and Ikeda K 1988 Phys. Rev. Lett. 61 655
[19] Yang Y B and Wang W G 2015 Chin. Phys. Lett. 32 030301
[20] Ping W, Qiang Z and Wang W G 2010 Chin. Phys. Lett. 27 080301
[21] Zhang S H, Jie Q L and Zhuo W 2009 Commun. Theor. Phys. 52 221
[22] Zhao W L and Jie Q 2020 Chin. Phys. B 29 080302
[23] Casati G 1979 LNP 93
[24] Frahm K M and Shepelyansky D L 2009 Phys. Rev. E 80 016210
[25] Guarneri I, Casati G and Karle V 2014 Phys. Rev. Lett. 113 174101
[26] Suntajs J, Prosen T and Vidmar L 2023 Phys. Rev. B 107 064205
[27] Ali T, Bhattacharyya A, Haque S S, et al. 2020 Phys. Rev. D 101 026021
[28] Bera S, Lokesh K Y V and Banerjee S 2022 Phys. Rev. Lett. 128 115302
[29] Rozenbaum E B, Ganeshan S and Galitski V 2019 Phys. Rev. B 100 035112
[30] Borgonovi F, Izrailev F M, Santos L F, et al. 2016 Phys. Rep. 626 1
[31] Srednicki M 1994 Phys. Rev. E 50 888
[32] Bertini B, Kos P and Prosen T 2019 Phys. Rev. X 9 021033
[33] Wang X, Ghose S, Sanders B C, et al. 2004 Phys. Rev. E 70 016217
[34] Lantagne-Hurtubise É, Plugge S, Can O, et al. 2020 Phys. Rev. Res. 2 013254
[35] Georgeot B and Shepelyansky D L 2000 Phys. Rev. E 62 3504
[36] Lévi B, Georgeot B and Shepelyansky D L 2003 Phys. Rev. E 67 046220
[37] Miessen A, Ollitrault P J, Tacchino F, et al. 2023 Nat. Comput. Sci. 3 25
[38] Kharkov Y A, Sotskov V E, Karazeev A A, et al. 2020 Phys. Rev. B 101 064406
[39] Hainaut C, Manai I, Clement J F, ′ et al. 2018 Nat. Commun. 9 1382
[40] Lopez M, Clément J F, Lemarié G, et al. 2013 New J. Phys. 15 065013
[41] Taddia L, Cornfeld E, Rossini D, et al. 2017 Phys. Rev. Lett. 118 230402
[42] Ma N and Gong J 2022 Phys. Rev. Res. 4 013234
[43] Hainaut C, Fang P, Ranǫon A, et al. 2018 Phys. Rev. Lett. 121 134101
[44] Naji J, Jafari R, Zhou L, et al. 2022 Phys. Rev. B 106 094314
[45] Else D V, Bauer B and Nayak C 2016 Phys. Rev. Lett. 117 090402
[46] Nurwantoro P, Bomantara R W and Gong J 2019 Phys. Rev. B 100 214311
[47] Casati G, Guarneri I and Shepelyansky D L 1989 Phys. Rev. Lett. 62 345
[48] Shepelyansky D L 1983 Physica D 8 208
[49] Ermann L and Shepelyansky D L 2014 J. Phys. A: Math. Theor. 47 335101
[50] Zhao W L and Liu J 2023 arXiv:2305.12150[quant-ph]
[51] Zhao W and Zhang H 2022 Symmetry 15 113
[52] Wang W Y and Zhao W L 2021 J. Phys.: Condens. Matter 34 025403
[53] Huang K Q, Zhao W L and Li Z 2021 Phys. Rev. A 104 052405
[54] Huang K, Wang J, Zhao W L, et al. 2021 J. Phys.: Condens. Matter 33 055402
[55] Zhao W L and Liu J 2023 arXiv:2307.00462[quant-ph]
[56] Huo L, Ke H and Zhao W L 2024 arXiv:2401.11059[quant-ph]
[1] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[2] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[3] Efficient and stable wireless power transfer based on the non-Hermitian physics
Chao Zeng(曾超), Zhiwei Guo(郭志伟), Kejia Zhu(祝可嘉), Caifu Fan(范才富), Guo Li(李果), Jun Jiang(江俊), Yunhui Li(李云辉), Haitao Jiang(江海涛), Yaping Yang(羊亚平), Yong Sun(孙勇), and Hong Chen(陈鸿). Chin. Phys. B, 2022, 31(1): 010307.
[4] Two-body exceptional points in open dissipative systems
Peize Ding(丁霈泽) and Wei Yi(易为). Chin. Phys. B, 2022, 31(1): 010309.
[5] Topological properties of non-Hermitian Creutz ladders
Hui-Qiang Liang(梁辉强) and Linhu Li(李林虎). Chin. Phys. B, 2022, 31(1): 010310.
[6] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[7] Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Junpeng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(7): 077101.
[8] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[9] Effect of temporal disorder on wave packet dynamics in one-dimensional kicked lattices
Yuting Wang(王雨婷), Yi Gao(高绎), Peiqing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120503.
[10] Dynamical localization effect in a coupled quantum dot array driven by an AC magnetic field
Xia Jun-Jie(夏俊杰) and Nie Yi-Hang(聂一行) . Chin. Phys. B, 2011, 20(9): 097306.
[11] Quantum control of two interacting electrons in a coupled quantum dot
Song Hong-Zhou(宋红州), Zhang Ping(张平), Duan Su-Qing(段素青), and Zhao Xian-Geng(赵宪庚). Chin. Phys. B, 2006, 15(9): 2130-2141.
[12] Effect of electron-phonon interactions on dynamical localization of semiconductor superlattices
Wang Zhi-Gang (王志刚), Duan Su-Qing (段素青), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2005, 14(6): 1232-1237.
[13] Effects of bias on dynamics of an AC-driven two-electron quantum-dot molecule
Wang Li-Min (王立民), Duan Su-Qing (段素青), Zhao Xian-Geng (赵宪庚), Liu Cheng-Shi (刘承师). Chin. Phys. B, 2005, 14(2): 409-419.
[14] Effect of external noise on the dynamical localization of two coupling electrons in quantum dot array
He An-Min (何安民), Duan Su-Qing (段素青), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2005, 14(11): 2320-2324.
[15] Dynamical properties of two-band superlattices with strong interband coupling in real space under the action of ac and dc-ac fields
Duan Su-Qing (段素青), Wang Zhi-Gang (王志刚), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2003, 12(8): 899-904.
No Suggested Reading articles found!