|
|
|
Interfacial thermal resistance in amorphous Mo/Si structures: A molecular dynamics study |
| Weiwu Miao(苗未午)1, Hongyu He(贺虹羽)1,2, Yi Tao(陶毅)3, Qiong Wu(吴琼)1, Chao Wu(吴超)4,†, and Chenhan Liu(刘晨晗)1,2,‡ |
1 Advanced Thermal Management Technology and Functional Materials Laboratory, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China; 2 Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing 210023, China; 3 Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China; 4 School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China |
|
|
|
|
Abstract Efficient thermal management is critical to the reliability and performance of nanoscale electronic and photonic devices, particularly those incorporating multilayer structures. In this study, non-equilibrium molecular dynamics simulations were conducted to systematically investigate the effects of temperature, penetration depth, and Si layer thickness on the interfacial thermal resistance (ITR) in nanometer-scale Mo/Si multilayers, widely employed in extreme ultraviolet lithography. The results indicate that: (i) temperature variations exert a negligible influence on the ITR of amorphous Mo/Si interfaces, which remains stable across the range of 200-900 K; (ii) increasing penetration depth enhances the overlap of phonon density of states, thereby significantly reducing ITR; (iii) the ITR decreases with increasing Si thickness up to 4.2 nm due to quasi-ballistic phonon transport, but rises again as phonon scattering becomes more pronounced at larger thicknesses. This study provides quantitative insights into heat transfer mechanisms at amorphous interfaces and also offers a feasible strategy for tailoring interfacial thermal transport through structural design.
|
Received: 25 June 2025
Revised: 06 August 2025
Accepted manuscript online: 11 August 2025
|
|
PACS:
|
65.80.-g
|
(Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)
|
| |
65.60.+a
|
(Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)
|
| |
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 52206092), the National Key R&D Program of China (Grant No. 2024YFF0508900), and the Big Data Computing Center of Southeast University as well as the Center for Fundamental and Interdisciplinary Sciences of Southeast University. |
Corresponding Authors:
Chao Wu, Chenhan Liu
E-mail: wuchao@njnu.edu.cn;chenhanliu@njnu.edu.cn
|
Cite this article:
Weiwu Miao(苗未午), Hongyu He(贺虹羽), Yi Tao(陶毅), Qiong Wu(吴琼), Chao Wu(吴超), and Chenhan Liu(刘晨晗) Interfacial thermal resistance in amorphous Mo/Si structures: A molecular dynamics study 2025 Chin. Phys. B 34 106501
|
[1] Wu B and Kumar A 2014 Appl. Phys. Rev. 1 011104 [2] Kazazis D, Santaclara J G, van Schoot J, Mochi I and Ekinci Y 2024 Nat. Rev. Methods Primers 4 84 [3] Garner C M 2012 Philos. Trans. R. Soc. A 370 4015 [4] Bajt S, Alameda J B, Barbee Jr T W, Clift W M, Folta J A, Kaufmann B and Spiller E A 2002 Opt. Eng. 41 1797 [5] Andreev S, Salashchenko N, Suslov L, Yablonsky A and Zuev S Y 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 470 162 [6] Xing W, Xu Y, Song C and Deng T 2022 Nanomaterials 12 3365 [7] Chen G 1999 ASME J. Heat Transfer. 121 945 [8] Kosevich Y A, Potyomina L, Darinskii A and Strelnikov I 2018 Phys. Rev. B 97 094117 [9] Allen P B, Feldman J L, Fabian J and Wooten F 1999 Philos. Mag. B 79 1715 [10] Tian S, Wu T, Hu S, Ma D and Zhang L 2024 Appl. Phys. Lett. 124 042202 [11] El Hajj J, Adessi C, de San Feliciano M, Ledoux G and Merabia S 2024 Phys. Rev. B 110 115437 [12] Chen J, Xu X, Zhou J and Li B 2022 Rev. Mod. Phys. 94 025002 [13] Inyushkin A, Taldenkov A, Ralchenko V, Bolshakov A, Koliadin A and Katrusha A 2018 Phys. Rev. B 97 144305 [14] Wei L, Kuo P, Thomas R, Anthony T and Banholzer W 1993 Phys. Rev. Lett. 70 3764 [15] Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829 [16] Zhu W, Zheng G, Cao S and He H 2018 Sci. Rep. 8 10537 [17] Wei B, Luo W, Du J, Ding Y, Guo Y, Zhu G, Zhu Y and Li B 2024 SusMat 4 239 [18] Yao Z, Stiglich J and Sudarshan T 1999 J. Mater. Eng. Perform. 8 291 [19] Wei Z, Fung C M, Pockett A, Dunlop T O, McGettrick J D, Heard P J, Guy O J, Carnie M J, Sullivan J H and Watson T M 2018 ACS Appl. Energy Mater. 1 2749 [20] Minasyan T, Ivanov R, Toyserkani E and Hussainova I 2021 J. Alloys Compd. 884 161034 [21] Wu Y J, Sasaki M, Goto M, Fang L and Xu Y 2018 ACS Appl. Nano Mater. 1 3355 [22] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, In’t Veld P J, Kohlmeyer A, Moore S G and Nguyen T D 2022 Comput. Phys. Commun. 271 108171 [23] Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012 [24] Tersoff J 1989 Phys. Rev. B 39 5566 [25] Zhang X J, Zhang J M and Xu K W 2007 Physica B 391 286 [26] Baskes M 1999 Mater. Sci. Eng. A 261 165 [27] Chen J X, Bu L H, Liang Y C, Wang L Q and Ju X F 2011 Harbin Gongye Daxue Xuebao (J. Harbin Inst. Technol.) 43 43 [28] Konnert J, D’Antonio P and Karle J 1980 Adv. X-Ray Anal. 24 63 [29] Tian B, Ma W, Chen S, Sun F and Wang X 2024 Int. J. Refract. Met. Hard Mater. 119 106560 [30] Cockayne D, McKenzie D, McBride W, Goringe C and McCulloch D 2000 Microsc. Microanal. 6 329 [31] Lee B H, Larentzos J P, Brennan J K and Strachan A 2024 npj Comput. Mater. 10 208 [32] Warzoha R J,Wilson A A, Donovan B F, Donmezer N, Giri A, Hopkins P E, Choi S, Pahinkar D, Shi J and Graham S 2021 J. Electron. Packag. 143 020804 [33] Liu C, Chen W, Tao Y, Yang J and Chen Y 2018 Int. J. Heat Mass Transfer 121 72 [34] Dickey J and Paskin A 1969 Phys. Rev. 188 1407 [35] Li B, Lan J and Wang L 2005 Phys. Rev. Lett. 95 104302 [36] Medvedev V, Yang J, Schmidt A, Yakshin A, Van de Kruijs R, Zoethout E and Bijkerk F 2015 J. Appl. Phys. 118 085101 [37] Wei C, Zhang S, Wang Z, Zheng C, Peng B, Li C, Zhang Y, Li X and Cheng L 2022 Compos. Part B: Eng. 243 110128 [38] Dharmawardhana C C, Zhou J, Taylor M, Miao J, Perepezko J H and Heinz H 2020 Acta Mater. 187 93 [39] Shen G, SturhahnW, Alph E, Zhao J, Tollenner T, Prakapenka V, Meng Y and Mao H R 2004 Phys. Chem. Miner. 31 353 [40] Wu Y J, Zhan T, Hou Z, Fang L and Xu Y 2020 Sci. Data 7 36 [41] Rane G K, Menzel S, Gemming T and Eckert J 2014 Thin Solid Films 571 1 [42] Han J and Lee S 2024 Phys. Rev. Mater. 8 014604 [43] Xi Q, Zhong J, He J, Xu X, Nakayama T,Wang Y, Liu J, Zhou J and Li B 2020 Chin. Phys. Lett. 37 104401 [44] Yang L, Yang B and Li B 2023 Phys. Rev. B 108 165303 [45] Gelin S, Tanaka H and Lemaître A 2016 Nat. Mater. 15 1177 [46] Grimsditch M, Polian A and Vogelgesang R 2003 J. Phys.: Condens. Matter 15 S2335 [47] Keune W, Hong S, Hu M Y, Zhao J, Toellner T, Alp E E, Sturhahn W, Rahman T and Roldan Cuenya B 2018 Phys. Rev. B 98 024308 [48] Hoegen H V 2024 Struct. Dyn. 11 021301 [49] Larkin J M and McGaughey A J 2014 Phys. Rev. B 89 144303 [50] Balasubramanian G and Puri I K 2011 Appl. Phys. Lett. 99 013116 [51] Samvedi V and Tomar V 2009 Nanotechnology 20 365701 [52] Tao Y, Liu C, Chen W, Cai S, Chen C, Wei Z, Bi K, Yang J and Chen Y 2017 Phys. Lett. A 381 1899 [53] Song D, Jing D, Ma W and Zhang X 2019 J. Appl. Phys. 125 015103 [54] Ishibe T, Okuhata R, Kaneko T, Yoshiya M, Nakashima S, Ishida A and Nakamura Y 2021 Commun. Phys. 4 153 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|