Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 106104    DOI: 10.1088/1674-1056/ae04d7
INVITED REVIEW Prev   Next  

Preparation of atomically thin 2D metals

Jiaojiao Zhao(赵交交)1,2,3, Guangyu Zhang(张广宇)1,2,3,†, and Luojun Du(杜罗军)1,2,‡
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Two-dimensional (2D) metals, which are appealing for a plethora of emergent phenomena and technological applications, stand as one of the highly sought-after goals in condensed-matter physics and materials science. In stark contrast to the widely-studied 2D van der Waals (vdW) layered materials in which their weak interlayer interactions facilitate the isolation from their bulk, 2D metals are extremely challenging to achieve because of their thermodynamic instability and non-layered nature. In this review, we highlight the recent advances in the reliable production of atomically thin 2D metals, including but not limited to vdW squeezing technique, top-down exfoliation, mechanical pressing, chemical etching, epitaxial growth, and confinement growth. We also present our perspectives and discuss the future opportunities and research directions in this new field.
Keywords:  two-dimensional (2D) metals      vdW squeezing      top-down strategy      bottom-up synthesis  
Received:  30 June 2025      Revised:  27 August 2025      Accepted manuscript online:  09 September 2025
PACS:  61.05.-a (Techniques for structure determination)  
  61.46.-w (Structure of nanoscale materials)  
Fund: This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant No. XDB0470101), the National Natural Science Foundation of China (Grant Nos. 12422402, 62488201, 12274447, 62204166, and 52325201), and the National Key Research and Development Program of China (Grant Nos. 2021YFA1202900 and 2023YFA1407000).
Corresponding Authors:  Guangyu Zhang, Guangyu Zhang     E-mail:  gyzhang@iphy.ac.cn;luojun.du@iphy.ac.cn

Cite this article: 

Jiaojiao Zhao(赵交交), Guangyu Zhang(张广宇), and Luojun Du(杜罗军) Preparation of atomically thin 2D metals 2025 Chin. Phys. B 34 106104

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim A K and Grigorieva I V 2013 Nature 499 419
[3] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[4] Du L, MolasMR, Huang Z, Zhang G,Wang F and Sun Z 2023 Science 379 eadg0014
[5] Du L, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y, Lau C N and Sun Z 2021 Nat. Rev. Phys. 3 193
[6] Du L, Huang Z, Zhang J, Ye F, Dai Q, Deng H, Zhang G and Sun Z 2024 Nat. Mater. 23 1179
[7] Du L, Huang Y, Wang Y, Wang Q, Yang R, Tang J, Liao M, Shi D, Shi Y, Zhou X, Zhang Q and Zhang G 2019 2D Mater. 6 015014
[8] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H and Zhang Y 2019 Nature 575 156
[9] Liu C, Liu T, Zhang Z, Sun Z, Zhang G, Wang E and Liu K 2024 Nat. Nanotechnol. 19 907
[10] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[11] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[12] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[13] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80
[14] Puthirath Balan A, Radhakrishnan S,Woellner C F, Sinha S K, Deng L, Reyes C d l, Rao B M, Paulose M, Neupane R, Apte A, Kochat V, Vajtai R, Harutyunyan A R, Chu C W, Costin G, Galvao D S, Martí A A, van Aken P A, Varghese O K, Tiwary C S, Malie Madom Ramaswamy Iyer A and Ajayan P M 2018 Nat. Nanotechnol. 13 602
[15] Zhao X, Song P, Wang C, Riis-Jensen A C, Fu W, Deng Y, Wan D, Kang L, Ning S, Dan J, Venkatesan T, Liu Z, Zhou W, Thygesen K S, Luo X, Pennycook S J and Loh K P 2020 Nature 581 171
[16] Zhang P, Wang X, Jiang H, Zhang Y, He Q, Si K, Li B, Zhao F, Cui A, Wei Y, Liu L, Que H, Tang P, Hu Z, Zhou W, Wu K and Gong Y 2022 Nat. Synth. 1 864
[17] Wu H, Zhang W, Yang L, Wang J, Li J, Li L, Gao Y, Zhang L, Du J, Shu H and Chang H 2021 Nat. Commun. 12 5688
[18] Jiang K, Ji J, Gong W, Ding L, Li J, Li P, Li B and Geng F 2023 Nat. Synth. 2 58
[19] Zhao J, Li L, Li P, Dai L, Dong J, Zhou L, Wang Y, Zhang P, Ji K, Zhang Y, Yu H, Wei Z, Li J, Li X, Huang Z, Wang B, Liu J, Chen Y, Zhang X, Wang S, Li N, Yang W, Shi D, Pan J, Du S, Du L and Zhang G 2025 Nature 639 354
[20] Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B and Zhang H 2018 Chem. Rev. 118 6409
[21] Xing Y, Zhang H M, Fu H L, Liu H, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J and Xie X C 2015 Science 350 542
[22] Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z and Zheng N 2011 Nat. Nanotechnol. 6 28
[23] Maniyara R A, Rodrigo D, Yu R, Canet-Ferrer J, Ghosh D S, Yongsunthon R, Baker D E, Rezikyan A, García de Abajo F J and Pruneri V 2019 Nat. Photon. 13 328
[24] Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F and Xue Q K 2010 Nat. Phys. 6 104
[25] Jäck B, Xie Y, Li J, Jeon S, Bernevig B A and Yazdani A 2019 Science 364 1255
[26] Briggs N, Bersch B, Wang Y, Jiang J, Koch R J, Nayir N, Wang K, Kolmer M, Ko W, De La Fuente Duran A, Subramanian S, Dong C, Shallenberger J, Fu M, Zou Q, Chuang Y W, Gai Z, Li A P, Bostwick A, Jozwiak C, Chang C Z, Rotenberg E, Zhu J, van Duin A C T, Crespi V and Robinson J A 2020 Nat. Mater. 19 637
[27] Sahu T K, Kumar N, Chahal S, Jana R, Paul S, Mukherjee M, Tavabi A H, Datta A, Dunin-Borkowski R E, Valov I, Nayak A and Kumar P 2023 Nat. Nanotechnol. 18 1430
[28] Gou J, Bai H, Zhang X, Huang Y L, Duan S, Ariando A, Yang S A, Chen L, Lu Y and Wee A T S 2023 Nature 617 67
[29] Steves M A, Wang Y, Briggs N, Zhao T, El-Sherif H, Bersch B M, Subramanian S, Dong C, Bowen T, Fuente Duran A D L, Nisi K, Lassaunière M, Wurstbauer U, Bassim N D, Fonseca J, Robinson J T, Crespi V H, Robinson J and Knappenberger Jr K L 2020 Nano Lett. 20 8312
[30] Xiong Y, McLellan J M, Chen J, Yin Y, Li Z Y and Xia Y 2005 J. Am. Chem. Soc. 127 17118
[31] Zhu F F, ChenWJ, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[32] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287
[33] Jin K H, Oh E, Stania R, Liu F and Yeom H W 2021 Nano Lett. 21 9468
[34] Chen L, Wu A X, Tulu N, Wang J, Juanson A, Watanabe K, Taniguchi T, PettesMT, CampbellMA, Xu M, Gadre C A, Zhou Y, Chen H, Cao P, Jauregui L A, Wu R, Pan X and Sanchez-Yamagishi J D 2024 Nat. Mater. 23 741
[35] Sanchez-Yamagishi J 2025 Nature 639 309
[36] Peer review report of “Realization of 2D metals at the angström thickness limit”
[37] Li L, Wang Q, Wu F, Xu Q, Tian J, Huang Z, Wang Q, Zhao X, Zhang Q, Fan Q, Li X, Peng Y, Zhang Y, Ji K, Zhi A, Sun H, Zhu M, Zhu J, Lu N, Lu Y, Wang S, Bai X, Xu Y, Yang W, Li N, Shi D, Xian L, Liu K, Du L and Zhang G 2024 Nat. Commun. 15 1825
[38] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
[39] Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J and Zhu X Y 2020 Science 367 903
[40] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J and Gao H J 2020 Nat. Commun. 11 2453
[41] Liu H, Tang H, Fang M, Si W, Zhang Q, Huang Z, Gu L, Pan W, Yao J, Nan C and Wu H 2016 Adv. Mater. 28 8170
[42] Huang K, Hou J, Zhang Q, Ou G, Ning D, Hussain N, Xu Y, Ge B, Liu K and Wu H 2017 Chem. Commun. 54 160
[43] Hussain N, Liang T, Zhang Q, Anwar T, Huang Y, Lang J, Huang K and Wu H 2017 Small 13 1701349
[44] Pan C, Tong Y, Qian H, Krasavin A V, Li J, Zhu J, Zhang Y, Cui B, Li Z, Wu C, Liu L, Li L, Guo X, Zayats A V, Tong L and Wang P 2024 Nat. Commun. 15 2840
[45] Kochat V, Samanta A, Zhang Y, Bhowmick S, Manimunda P, Asif S A S, Stender A S, Vajtai R, Singh A K, Tiwary C S and Ajayan P M 2018 Sci. Adv. 4 e1701373
[46] Ford W K, Guo T, Lessor D L and Duke C B 1990 Phys. Rev. B 42 8952
[47] Nagao T, Doi T, Sekiguchi T and Hasegawa S 2000 Jpn. J. Appl. Phys. 39 4567
[48] Ernst K H, Ludviksson A, Zhang R, Yoshihara J and Campbell C T 1993 Phys. Rev. B 47 13782
[49] Qian D, Jin X F, Barthel J, Klaua M and Kirschner J 2001 Phys. Rev. Lett. 87 227204
[50] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133
[51] Fang A, Adamo C, Jia S, Cava R J,Wu S C, Felser C and Kapitulnik A 2018 Sci. Adv. 4 eaaq0330
[52] Sun H H, Wang M X, Zhu F, Wang G Y, Ma H Y, Xu Z A, Liao Q, Lu Y, Gao C L, Li Y Y, Liu C, Qian D, Guan D and Jia J F 2017 Nano Lett. 17 3035
[53] Li L, Wang Y, Xie S, Li X B, Wang Y Q, Wu R, Sun H, Zhang S and Gao H J 2013 Nano Lett. 13 4671
[54] Zhang T, Wang J, Wu P, Lu A Y and Kong J 2023 Nat. Rev. Mater. 8 799
[55] Wang Q, Tang J, Li X, Tian J, Liang J, Li N, Ji D, Xian L, Guo Y, Li L, Zhang Q, Chu Y, Wei Z, Zhao Y, Du L, Yu H, Bai X, Gu L, Liu K, Yang W, Yang R, Shi D and Zhang G 2022 Natl Sci. Rev. 9 nwac077
[56] Qin B, Ma C, Guo Q, Li X, Wei W, Ma C, Wang Q, Liu F, Zhao M, Xue G, Qi J, Wu M, Hong H, Du L, Zhao Q, Gao P, Wang X, Wang E, Zhang G, Liu C and Liu K 2024 Science 385 99
[57] Yang P,Wang D, Zhao X, QuanW, Jiang Q, Li X, Tang B, Hu J, Zhu L, Pan S, Shi Y, Huan Y, Cui F, Qiao S, Chen Q, Liu Z, Zou X and Zhang Y 2022 Nat. Commun. 13 3238
[58] Li J, Yang X, Zhang Z, Yang W, Duan X and Duan X 2024 Nat. Mater. 23 1326
[59] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L,WangW, Ni Z, Hao Y and Zeng H 2016 Nat. Commun. 7 13352
[60] Huang L, Pan Y, Pan L, Gao M, Xu W, Que Y, Zhou H, Wang Y, Du S and Gao H J 2011 Appl. Phys. Lett. 99 163107
[61] Calleja F, Ochoa H, Garnica M, Barja S, Navarro J J, Black A, Otrokov M M, Chulkov E V, Arnau A, Vázquez de Parga A L, Guinea F and Miranda R 2015 Nat. Phys. 11 43
[62] Jia Y, Yuan F, Cheng G, Tang Y, Yu G, Song T, Wang P, Singha R, Uzan-Narovlansky A J, Onyszczak M, Watanabe K, Taniguchi T, Yao N, Schoop L M and Wu S 2024 Nat. Synth. 3 386
[1] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[2] FL-Online: An x-ray crystallographic web-server for atomic-scale structure analysis of biomolecule
Bintang Wang(王宾堂), Tongxin Niu(牛彤欣), Haifu Fan(范海福), and Wei Ding(丁玮). Chin. Phys. B, 2024, 33(7): 076104.
[3] DSAS: A new macromolecular substructure solution program based on the modified phase-retrieval algorithm
Xingke Fu(付兴科), Zhenxi Tan(谭振希), Zhi Geng(耿直), Qian Liu(刘茜), and Wei Ding(丁玮). Chin. Phys. B, 2024, 33(5): 056102.
[4] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[7] Multi-layer structures including zigzag sculptured thin films for corrosion protection of AISI 304 stainless steel
Fateme Abdi. Chin. Phys. B, 2021, 30(3): 038106.
[8] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[9] Anti-oxidation characteristics of Cr-coating on surface of Ti-45Al-8.5Nb alloy by plasma surface metallurgy technique
Bing Zhou(周兵), Ya-Rong Wang(王亚榕), Ke Zheng(郑可), Yong Ma(马永), Yong-Sheng Wang(王永胜), Sheng-Wang Yu(于盛旺), and Yu-Cheng Wu(吴玉程). Chin. Phys. B, 2020, 29(12): 126101.
[10] Development of “Parameter space screening”-based single-wavelength anomalous diffraction phasing and structure determination pipeline
Wei Ding(丁玮), Xiao-Ting Wang(王小婷), Yang-Yang Yi(易阳旸). Chin. Phys. B, 2019, 28(11): 116101.
[11] Effects of helium irradiation dose and temperature on the damage evolution of Ti3SiC2 ceramic
Hua-Hai Shen(申华海), Xia Xiang(向霞), Hai-Bin Zhang(张海斌), Xiao-Song Zhou(周晓松), Hong-Xiang Deng(邓洪祥), Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2019, 28(7): 076104.
[12] Enhancement of MAD/MIR phasing at low resolution and a new procedure for automatic phase extension
Pu Han(韩普), Yuan-Xin Gu(古元新), Wei Ding(丁玮), Hai-Fu Fan(范海福). Chin. Phys. B, 2019, 28(7): 076108.
[13] Nondestructive determination of film thickness with laser-induced surface acoustic waves
Xiao Xia(肖夏), Kong Tao(孔涛), Qi Hai Yang(戚海洋), Qing Hui Quan(秦慧全). Chin. Phys. B, 2018, 27(9): 096802.
[14] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
[15] Tunable monoenergy positron annihilation spectroscopy of polyethylene glycol thin films
Peng Kuang(况鹏), Xiao-Long Han(韩小龙), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Peng Zhang(张鹏), Bao-Yi Wang(王宝义). Chin. Phys. B, 2017, 26(5): 057802.
No Suggested Reading articles found!