|
|
|
Preparation of atomically thin 2D metals |
| Jiaojiao Zhao(赵交交)1,2,3, Guangyu Zhang(张广宇)1,2,3,†, and Luojun Du(杜罗军)1,2,‡ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
|
|
Abstract Two-dimensional (2D) metals, which are appealing for a plethora of emergent phenomena and technological applications, stand as one of the highly sought-after goals in condensed-matter physics and materials science. In stark contrast to the widely-studied 2D van der Waals (vdW) layered materials in which their weak interlayer interactions facilitate the isolation from their bulk, 2D metals are extremely challenging to achieve because of their thermodynamic instability and non-layered nature. In this review, we highlight the recent advances in the reliable production of atomically thin 2D metals, including but not limited to vdW squeezing technique, top-down exfoliation, mechanical pressing, chemical etching, epitaxial growth, and confinement growth. We also present our perspectives and discuss the future opportunities and research directions in this new field.
|
Received: 30 June 2025
Revised: 27 August 2025
Accepted manuscript online: 09 September 2025
|
|
PACS:
|
61.05.-a
|
(Techniques for structure determination)
|
| |
61.46.-w
|
(Structure of nanoscale materials)
|
|
| Fund: This work is supported by the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant No. XDB0470101), the National Natural Science Foundation of China (Grant Nos. 12422402, 62488201, 12274447, 62204166, and 52325201), and the National Key Research and Development Program of China (Grant Nos. 2021YFA1202900 and 2023YFA1407000). |
Corresponding Authors:
Guangyu Zhang, Guangyu Zhang
E-mail: gyzhang@iphy.ac.cn;luojun.du@iphy.ac.cn
|
Cite this article:
Jiaojiao Zhao(赵交交), Guangyu Zhang(张广宇), and Luojun Du(杜罗军) Preparation of atomically thin 2D metals 2025 Chin. Phys. B 34 106104
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Geim A K and Grigorieva I V 2013 Nature 499 419 [3] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439 [4] Du L, MolasMR, Huang Z, Zhang G,Wang F and Sun Z 2023 Science 379 eadg0014 [5] Du L, Hasan T, Castellanos-Gomez A, Liu G B, Yao Y, Lau C N and Sun Z 2021 Nat. Rev. Phys. 3 193 [6] Du L, Huang Z, Zhang J, Ye F, Dai Q, Deng H, Zhang G and Sun Z 2024 Nat. Mater. 23 1179 [7] Du L, Huang Y, Wang Y, Wang Q, Yang R, Tang J, Liao M, Shi D, Shi Y, Zhou X, Zhang Q and Zhang G 2019 2D Mater. 6 015014 [8] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H and Zhang Y 2019 Nature 575 156 [9] Liu C, Liu T, Zhang Z, Sun Z, Zhang G, Wang E and Liu K 2024 Nat. Nanotechnol. 19 907 [10] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [11] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [12] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372 [13] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [14] Puthirath Balan A, Radhakrishnan S,Woellner C F, Sinha S K, Deng L, Reyes C d l, Rao B M, Paulose M, Neupane R, Apte A, Kochat V, Vajtai R, Harutyunyan A R, Chu C W, Costin G, Galvao D S, Martí A A, van Aken P A, Varghese O K, Tiwary C S, Malie Madom Ramaswamy Iyer A and Ajayan P M 2018 Nat. Nanotechnol. 13 602 [15] Zhao X, Song P, Wang C, Riis-Jensen A C, Fu W, Deng Y, Wan D, Kang L, Ning S, Dan J, Venkatesan T, Liu Z, Zhou W, Thygesen K S, Luo X, Pennycook S J and Loh K P 2020 Nature 581 171 [16] Zhang P, Wang X, Jiang H, Zhang Y, He Q, Si K, Li B, Zhao F, Cui A, Wei Y, Liu L, Que H, Tang P, Hu Z, Zhou W, Wu K and Gong Y 2022 Nat. Synth. 1 864 [17] Wu H, Zhang W, Yang L, Wang J, Li J, Li L, Gao Y, Zhang L, Du J, Shu H and Chang H 2021 Nat. Commun. 12 5688 [18] Jiang K, Ji J, Gong W, Ding L, Li J, Li P, Li B and Geng F 2023 Nat. Synth. 2 58 [19] Zhao J, Li L, Li P, Dai L, Dong J, Zhou L, Wang Y, Zhang P, Ji K, Zhang Y, Yu H, Wei Z, Li J, Li X, Huang Z, Wang B, Liu J, Chen Y, Zhang X, Wang S, Li N, Yang W, Shi D, Pan J, Du S, Du L and Zhang G 2025 Nature 639 354 [20] Chen Y, Fan Z, Zhang Z, Niu W, Li C, Yang N, Chen B and Zhang H 2018 Chem. Rev. 118 6409 [21] Xing Y, Zhang H M, Fu H L, Liu H, Sun Y, Peng J P, Wang F, Lin X, Ma X C, Xue Q K, Wang J and Xie X C 2015 Science 350 542 [22] Huang X, Tang S, Mu X, Dai Y, Chen G, Zhou Z, Ruan F, Yang Z and Zheng N 2011 Nat. Nanotechnol. 6 28 [23] Maniyara R A, Rodrigo D, Yu R, Canet-Ferrer J, Ghosh D S, Yongsunthon R, Baker D E, Rezikyan A, García de Abajo F J and Pruneri V 2019 Nat. Photon. 13 328 [24] Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F and Xue Q K 2010 Nat. Phys. 6 104 [25] Jäck B, Xie Y, Li J, Jeon S, Bernevig B A and Yazdani A 2019 Science 364 1255 [26] Briggs N, Bersch B, Wang Y, Jiang J, Koch R J, Nayir N, Wang K, Kolmer M, Ko W, De La Fuente Duran A, Subramanian S, Dong C, Shallenberger J, Fu M, Zou Q, Chuang Y W, Gai Z, Li A P, Bostwick A, Jozwiak C, Chang C Z, Rotenberg E, Zhu J, van Duin A C T, Crespi V and Robinson J A 2020 Nat. Mater. 19 637 [27] Sahu T K, Kumar N, Chahal S, Jana R, Paul S, Mukherjee M, Tavabi A H, Datta A, Dunin-Borkowski R E, Valov I, Nayak A and Kumar P 2023 Nat. Nanotechnol. 18 1430 [28] Gou J, Bai H, Zhang X, Huang Y L, Duan S, Ariando A, Yang S A, Chen L, Lu Y and Wee A T S 2023 Nature 617 67 [29] Steves M A, Wang Y, Briggs N, Zhao T, El-Sherif H, Bersch B M, Subramanian S, Dong C, Bowen T, Fuente Duran A D L, Nisi K, Lassaunière M, Wurstbauer U, Bassim N D, Fonseca J, Robinson J T, Crespi V H, Robinson J and Knappenberger Jr K L 2020 Nano Lett. 20 8312 [30] Xiong Y, McLellan J M, Chen J, Yin Y, Li Z Y and Xia Y 2005 J. Am. Chem. Soc. 127 17118 [31] Zhu F F, ChenWJ, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020 [32] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287 [33] Jin K H, Oh E, Stania R, Liu F and Yeom H W 2021 Nano Lett. 21 9468 [34] Chen L, Wu A X, Tulu N, Wang J, Juanson A, Watanabe K, Taniguchi T, PettesMT, CampbellMA, Xu M, Gadre C A, Zhou Y, Chen H, Cao P, Jauregui L A, Wu R, Pan X and Sanchez-Yamagishi J D 2024 Nat. Mater. 23 741 [35] Sanchez-Yamagishi J 2025 Nature 639 309 [36] Peer review report of “Realization of 2D metals at the angström thickness limit” [37] Li L, Wang Q, Wu F, Xu Q, Tian J, Huang Z, Wang Q, Zhao X, Zhang Q, Fan Q, Li X, Peng Y, Zhang Y, Ji K, Zhi A, Sun H, Zhu M, Zhu J, Lu N, Lu Y, Wang S, Bai X, Xu Y, Yang W, Li N, Shi D, Xian L, Liu K, Du L and Zhang G 2024 Nat. Commun. 15 1825 [38] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 [39] Liu F, Wu W, Bai Y, Chae S H, Li Q, Wang J, Hone J and Zhu X Y 2020 Science 367 903 [40] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J and Gao H J 2020 Nat. Commun. 11 2453 [41] Liu H, Tang H, Fang M, Si W, Zhang Q, Huang Z, Gu L, Pan W, Yao J, Nan C and Wu H 2016 Adv. Mater. 28 8170 [42] Huang K, Hou J, Zhang Q, Ou G, Ning D, Hussain N, Xu Y, Ge B, Liu K and Wu H 2017 Chem. Commun. 54 160 [43] Hussain N, Liang T, Zhang Q, Anwar T, Huang Y, Lang J, Huang K and Wu H 2017 Small 13 1701349 [44] Pan C, Tong Y, Qian H, Krasavin A V, Li J, Zhu J, Zhang Y, Cui B, Li Z, Wu C, Liu L, Li L, Guo X, Zayats A V, Tong L and Wang P 2024 Nat. Commun. 15 2840 [45] Kochat V, Samanta A, Zhang Y, Bhowmick S, Manimunda P, Asif S A S, Stender A S, Vajtai R, Singh A K, Tiwary C S and Ajayan P M 2018 Sci. Adv. 4 e1701373 [46] Ford W K, Guo T, Lessor D L and Duke C B 1990 Phys. Rev. B 42 8952 [47] Nagao T, Doi T, Sekiguchi T and Hasegawa S 2000 Jpn. J. Appl. Phys. 39 4567 [48] Ernst K H, Ludviksson A, Zhang R, Yoshihara J and Campbell C T 1993 Phys. Rev. B 47 13782 [49] Qian D, Jin X F, Barthel J, Klaua M and Kirschner J 2001 Phys. Rev. Lett. 87 227204 [50] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133 [51] Fang A, Adamo C, Jia S, Cava R J,Wu S C, Felser C and Kapitulnik A 2018 Sci. Adv. 4 eaaq0330 [52] Sun H H, Wang M X, Zhu F, Wang G Y, Ma H Y, Xu Z A, Liao Q, Lu Y, Gao C L, Li Y Y, Liu C, Qian D, Guan D and Jia J F 2017 Nano Lett. 17 3035 [53] Li L, Wang Y, Xie S, Li X B, Wang Y Q, Wu R, Sun H, Zhang S and Gao H J 2013 Nano Lett. 13 4671 [54] Zhang T, Wang J, Wu P, Lu A Y and Kong J 2023 Nat. Rev. Mater. 8 799 [55] Wang Q, Tang J, Li X, Tian J, Liang J, Li N, Ji D, Xian L, Guo Y, Li L, Zhang Q, Chu Y, Wei Z, Zhao Y, Du L, Yu H, Bai X, Gu L, Liu K, Yang W, Yang R, Shi D and Zhang G 2022 Natl Sci. Rev. 9 nwac077 [56] Qin B, Ma C, Guo Q, Li X, Wei W, Ma C, Wang Q, Liu F, Zhao M, Xue G, Qi J, Wu M, Hong H, Du L, Zhao Q, Gao P, Wang X, Wang E, Zhang G, Liu C and Liu K 2024 Science 385 99 [57] Yang P,Wang D, Zhao X, QuanW, Jiang Q, Li X, Tang B, Hu J, Zhu L, Pan S, Shi Y, Huan Y, Cui F, Qiao S, Chen Q, Liu Z, Zou X and Zhang Y 2022 Nat. Commun. 13 3238 [58] Li J, Yang X, Zhang Z, Yang W, Duan X and Duan X 2024 Nat. Mater. 23 1326 [59] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L,WangW, Ni Z, Hao Y and Zeng H 2016 Nat. Commun. 7 13352 [60] Huang L, Pan Y, Pan L, Gao M, Xu W, Que Y, Zhou H, Wang Y, Du S and Gao H J 2011 Appl. Phys. Lett. 99 163107 [61] Calleja F, Ochoa H, Garnica M, Barja S, Navarro J J, Black A, Otrokov M M, Chulkov E V, Arnau A, Vázquez de Parga A L, Guinea F and Miranda R 2015 Nat. Phys. 11 43 [62] Jia Y, Yuan F, Cheng G, Tang Y, Yu G, Song T, Wang P, Singha R, Uzan-Narovlansky A J, Onyszczak M, Watanabe K, Taniguchi T, Yao N, Schoop L M and Wu S 2024 Nat. Synth. 3 386 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|