Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 014204    DOI: 10.1088/1674-1056/ad886b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

High peak power mini-array quantum cascade lasers operating in pulsed mode

Yuhang Zhang(章宇航)1, Yupei Wang(王渝沛)3, Xiaoyue Luo(罗晓玥)3, Chenhao Qian(钱晨灏)4, Yang Cheng(程洋)5, Wu Zhao(赵武)5, Fangyuan Sun(孙方圆)5, Jun Wang(王俊)3,5,†, and Zheng-Ming Sun(孙正明)2,‡
1 Southeast University-Monash University Joint Graduate School (Suzhou), Southeast University, Suzhou 215125, China;
2 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China;
3 College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China;
4 Huaiyin Institute of Technology, Huaian 223003, China;
5 Suzhou Everbright Photonics Co., Ltd., Suzhou 215163, China
Abstract  Broad area quantum cascade lasers (BA QCLs) have significant applications in many areas, but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes. A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs. The active region is etched to form a multi-emitter and the channels are filled with InP:Fe, which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency. A device with $\lambda \sim$ 4.8 μm, a peak output power of 122 W at 1.2% duty cycle with a pulse of 1.5 μs is obtained in room temperature, with far-field single-lobed distribution. This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions, promotes the application of the mid-infrared laser operating in pulsed mode in the field of standoff photoacoustic chemical detection, space optical communication, and so on.
Keywords:  quantum cascade laser      mini-array      thermal management  
Received:  28 July 2024      Revised:  12 September 2024      Accepted manuscript online:  18 October 2024
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.55.-f (Lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Corresponding Authors:  Jun Wang, Zheng-Ming Sun     E-mail:  wjdz@scu.edu.cn;zmsun@seu.edu.cn

Cite this article: 

Yuhang Zhang(章宇航), Yupei Wang(王渝沛), Xiaoyue Luo(罗晓玥), Chenhao Qian(钱晨灏), Yang Cheng(程洋), Wu Zhao(赵武), Fangyuan Sun(孙方圆), Jun Wang(王俊), and Zheng-Ming Sun(孙正明) High peak power mini-array quantum cascade lasers operating in pulsed mode 2025 Chin. Phys. B 34 014204

[1] Chen X, Yang C G, Hu M, Shen J K, Niu E C, Xu Z Y, Fan X L, Wei M, Yao L, He Y B, Liu J G and Kan R F 2018 Chin. Phys. B 27 040701
[2] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
[3] Wang F, Slivken S, Wu D H and Razeghi M 2020 Opt. Express 28 17532
[4] Dutta Majumdar J and Manna I 2011 International Materials Rreviews 56 341
[5] Geiser P, Willer U, Walter D and Schade W 2006 Appl. Phys. 83 175
[6] Plamann K, Aptel F, Arnold C L, Courjaud A, Crotti C, Deloison F, Druon F, Georges P, Hanna M, Legeais J M, Morin F, Mottay E, Nuzzo V, Peyrot D A and Savoldelli M 2010 J. Opt. 12 084002
[7] Weber R, Graf T, Berger P, Onuseit V, Wiedenmann M, Freitag C and Feuer A 2014 Opt. Express 22 11312
[8] Frevert C, Bugge F, Knigge S, Ginolas A, Erbert G and Crump P 2016 High-Power Diode Laser Technology and Applications XIV, February 13-18, 2016, San Francisco, USA p. 113
[9] Bai Y, Slivken S, Darvish S R, Haddadi A, Gokden B and Razeghi M 2009 Appl. Phys. Lett. 95 221104
[10] Zhao Y, Yan F, Zhang J, Liu F, Zhuo N, Liu J, Wang L and Wang Z 2017 J. Semicond. 38 074005
[11] Heydari D, Bai Y, Bandyopadhyay N, Slivken S and Razeghi M 2015 Appl. Phys. Lett. 106 091105
[12] De Naurois G M, Carras M, Simozrag B, Patard O, Alexandre F and Marcadet X 2011 AIP Adv. 1 032165
[13] Gu Z H, Zhang J C, Wang H, Yang P C, Zhuo N, Zhai S Q, Liu J Q, Wang L J, Liu S M and Liu F Q 2021 Chin. Phys. B 30 104201
[14] De Naurois G M, Carras M, Simozrag B, Alexandre F and Marcadet X 2012 Novel In-Plane Semiconductor Lasers XI, January 21-26, 2012, San Francisco, USA, p. 305
[15] Chen X, Cheng L, Guo D, Li J Y and Choa F S 2012 CLEO: Science and Innovations, May 6-11, 2012, San Jose, USA, p. CTh3N.7
[16] Kirch J D, Chang C C, Boyle C, Mawst L J, Lindberg D, Earles T and Botez D 2015 Appl. Phys. Lett. 106 061113
[17] Botez D, Kirch J D, Boyle C, Oresick K M, Sigler C, Kim H, Knipfer B B, Ryu J H, Lindberg D, Earles T, Mawst L J and Flores Y V 2018 Opt. Mater. Express 8 1378
[18] Lee H K, Chung K S, Yu J S and RazeghiM2009 Physica Status Solidi (a) 206 356
[19] Lee H K and Yu J S 2010 Solid-state Electronics 54 769
[20] Xu Y, Sun Y, Li W, Ma Y, Zhuo N, Liu J, Zhang J C, Zhai S Q, Liu S M, Wang L J and Liu F Q 2022 Opt. Express 30 36783
[21] Gaolei C, Huan Z, Chenren Y, Haiqing Z, Gangyi X and Li H 2020 Infrared Physics & Technology 109 103427
[1] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[2] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[3] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[4] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[5] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[6] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[7] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[8] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[9] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[10] Thermal conductivity of nanowires
Zhongwei Zhang(张忠卫), Jie Chen(陈杰). Chin. Phys. B, 2018, 27(3): 035101.
[11] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[12] High power-efficiency terahertz quantum cascade laser
Yuan-Yuan Li(李媛媛), Jun-Qi Liu(刘俊岐), Feng-Qi Liu(刘峰奇), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Zhan-Guo Wang(王占国). Chin. Phys. B, 2016, 25(8): 084206.
[13] An equivalent circuit model for terahertz quantumcascade lasers: Modeling and experiments
Yao Chen (姚辰), Xu Tian-Hong (徐天鸿), Wan Wen-Jian (万文坚), Zhu Yong-Hao (朱永浩), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2015, 24(9): 094208.
[14] Frequency-locking and threshold current-lowering effects of a quantum cascade laser and an application in gas detection field
Chen Wei-Gen (陈伟根), Wan Fu (万福), Zou Jing-Xin (邹经鑫), Gu Zhao-Liang (顾朝亮), Zhou Qu (周渠). Chin. Phys. B, 2015, 24(2): 024206.
[15] Very low threshold operation of quantum cascade lasers
Yan Fang-Liang (闫方亮), Zhang Jin-Chuan (张锦川), Yao Dan-Yang (姚丹阳), Liu Feng-Qi (刘峰奇), Wang Li-Jun (王利军), Liu Jun-Qi (刘峻岐), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(2): 024212.
No Suggested Reading articles found!