Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 106501    DOI: 10.1088/1674-1056/adf9ff
RAPID COMMUNICATION Prev   Next  

Interfacial thermal resistance in amorphous Mo/Si structures: A molecular dynamics study

Weiwu Miao(苗未午)1, Hongyu He(贺虹羽)1,2, Yi Tao(陶毅)3, Qiong Wu(吴琼)1, Chao Wu(吴超)4,†, and Chenhan Liu(刘晨晗)1,2,‡
1 Advanced Thermal Management Technology and Functional Materials Laboratory, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China;
2 Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing 210023, China;
3 Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211100, China;
4 School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China
Abstract  Efficient thermal management is critical to the reliability and performance of nanoscale electronic and photonic devices, particularly those incorporating multilayer structures. In this study, non-equilibrium molecular dynamics simulations were conducted to systematically investigate the effects of temperature, penetration depth, and Si layer thickness on the interfacial thermal resistance (ITR) in nanometer-scale Mo/Si multilayers, widely employed in extreme ultraviolet lithography. The results indicate that: (i) temperature variations exert a negligible influence on the ITR of amorphous Mo/Si interfaces, which remains stable across the range of 200-900 K; (ii) increasing penetration depth enhances the overlap of phonon density of states, thereby significantly reducing ITR; (iii) the ITR decreases with increasing Si thickness up to 4.2 nm due to quasi-ballistic phonon transport, but rises again as phonon scattering becomes more pronounced at larger thicknesses. This study provides quantitative insights into heat transfer mechanisms at amorphous interfaces and also offers a feasible strategy for tailoring interfacial thermal transport through structural design.
Keywords:  thermal management      Mo/Si structure      interface thermal resistance      molecular dynamics simulation  
Received:  25 June 2025      Revised:  06 August 2025      Accepted manuscript online:  11 August 2025
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  65.60.+a (Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 52206092), the National Key R&D Program of China (Grant No. 2024YFF0508900), and the Big Data Computing Center of Southeast University as well as the Center for Fundamental and Interdisciplinary Sciences of Southeast University.
Corresponding Authors:  Chao Wu, Chenhan Liu     E-mail:  wuchao@njnu.edu.cn;chenhanliu@njnu.edu.cn

Cite this article: 

Weiwu Miao(苗未午), Hongyu He(贺虹羽), Yi Tao(陶毅), Qiong Wu(吴琼), Chao Wu(吴超), and Chenhan Liu(刘晨晗) Interfacial thermal resistance in amorphous Mo/Si structures: A molecular dynamics study 2025 Chin. Phys. B 34 106501

[1] Wu B and Kumar A 2014 Appl. Phys. Rev. 1 011104
[2] Kazazis D, Santaclara J G, van Schoot J, Mochi I and Ekinci Y 2024 Nat. Rev. Methods Primers 4 84
[3] Garner C M 2012 Philos. Trans. R. Soc. A 370 4015
[4] Bajt S, Alameda J B, Barbee Jr T W, Clift W M, Folta J A, Kaufmann B and Spiller E A 2002 Opt. Eng. 41 1797
[5] Andreev S, Salashchenko N, Suslov L, Yablonsky A and Zuev S Y 2001 Nucl. Instrum. Methods Phys. Res. Sect. A 470 162
[6] Xing W, Xu Y, Song C and Deng T 2022 Nanomaterials 12 3365
[7] Chen G 1999 ASME J. Heat Transfer. 121 945
[8] Kosevich Y A, Potyomina L, Darinskii A and Strelnikov I 2018 Phys. Rev. B 97 094117
[9] Allen P B, Feldman J L, Fabian J and Wooten F 1999 Philos. Mag. B 79 1715
[10] Tian S, Wu T, Hu S, Ma D and Zhang L 2024 Appl. Phys. Lett. 124 042202
[11] El Hajj J, Adessi C, de San Feliciano M, Ledoux G and Merabia S 2024 Phys. Rev. B 110 115437
[12] Chen J, Xu X, Zhou J and Li B 2022 Rev. Mod. Phys. 94 025002
[13] Inyushkin A, Taldenkov A, Ralchenko V, Bolshakov A, Koliadin A and Katrusha A 2018 Phys. Rev. B 97 144305
[14] Wei L, Kuo P, Thomas R, Anthony T and Banholzer W 1993 Phys. Rev. Lett. 70 3764
[15] Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
[16] Zhu W, Zheng G, Cao S and He H 2018 Sci. Rep. 8 10537
[17] Wei B, Luo W, Du J, Ding Y, Guo Y, Zhu G, Zhu Y and Li B 2024 SusMat 4 239
[18] Yao Z, Stiglich J and Sudarshan T 1999 J. Mater. Eng. Perform. 8 291
[19] Wei Z, Fung C M, Pockett A, Dunlop T O, McGettrick J D, Heard P J, Guy O J, Carnie M J, Sullivan J H and Watson T M 2018 ACS Appl. Energy Mater. 1 2749
[20] Minasyan T, Ivanov R, Toyserkani E and Hussainova I 2021 J. Alloys Compd. 884 161034
[21] Wu Y J, Sasaki M, Goto M, Fang L and Xu Y 2018 ACS Appl. Nano Mater. 1 3355
[22] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, In’t Veld P J, Kohlmeyer A, Moore S G and Nguyen T D 2022 Comput. Phys. Commun. 271 108171
[23] Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012
[24] Tersoff J 1989 Phys. Rev. B 39 5566
[25] Zhang X J, Zhang J M and Xu K W 2007 Physica B 391 286
[26] Baskes M 1999 Mater. Sci. Eng. A 261 165
[27] Chen J X, Bu L H, Liang Y C, Wang L Q and Ju X F 2011 Harbin Gongye Daxue Xuebao (J. Harbin Inst. Technol.) 43 43
[28] Konnert J, D’Antonio P and Karle J 1980 Adv. X-Ray Anal. 24 63
[29] Tian B, Ma W, Chen S, Sun F and Wang X 2024 Int. J. Refract. Met. Hard Mater. 119 106560
[30] Cockayne D, McKenzie D, McBride W, Goringe C and McCulloch D 2000 Microsc. Microanal. 6 329
[31] Lee B H, Larentzos J P, Brennan J K and Strachan A 2024 npj Comput. Mater. 10 208
[32] Warzoha R J,Wilson A A, Donovan B F, Donmezer N, Giri A, Hopkins P E, Choi S, Pahinkar D, Shi J and Graham S 2021 J. Electron. Packag. 143 020804
[33] Liu C, Chen W, Tao Y, Yang J and Chen Y 2018 Int. J. Heat Mass Transfer 121 72
[34] Dickey J and Paskin A 1969 Phys. Rev. 188 1407
[35] Li B, Lan J and Wang L 2005 Phys. Rev. Lett. 95 104302
[36] Medvedev V, Yang J, Schmidt A, Yakshin A, Van de Kruijs R, Zoethout E and Bijkerk F 2015 J. Appl. Phys. 118 085101
[37] Wei C, Zhang S, Wang Z, Zheng C, Peng B, Li C, Zhang Y, Li X and Cheng L 2022 Compos. Part B: Eng. 243 110128
[38] Dharmawardhana C C, Zhou J, Taylor M, Miao J, Perepezko J H and Heinz H 2020 Acta Mater. 187 93
[39] Shen G, SturhahnW, Alph E, Zhao J, Tollenner T, Prakapenka V, Meng Y and Mao H R 2004 Phys. Chem. Miner. 31 353
[40] Wu Y J, Zhan T, Hou Z, Fang L and Xu Y 2020 Sci. Data 7 36
[41] Rane G K, Menzel S, Gemming T and Eckert J 2014 Thin Solid Films 571 1
[42] Han J and Lee S 2024 Phys. Rev. Mater. 8 014604
[43] Xi Q, Zhong J, He J, Xu X, Nakayama T,Wang Y, Liu J, Zhou J and Li B 2020 Chin. Phys. Lett. 37 104401
[44] Yang L, Yang B and Li B 2023 Phys. Rev. B 108 165303
[45] Gelin S, Tanaka H and Lemaître A 2016 Nat. Mater. 15 1177
[46] Grimsditch M, Polian A and Vogelgesang R 2003 J. Phys.: Condens. Matter 15 S2335
[47] Keune W, Hong S, Hu M Y, Zhao J, Toellner T, Alp E E, Sturhahn W, Rahman T and Roldan Cuenya B 2018 Phys. Rev. B 98 024308
[48] Hoegen H V 2024 Struct. Dyn. 11 021301
[49] Larkin J M and McGaughey A J 2014 Phys. Rev. B 89 144303
[50] Balasubramanian G and Puri I K 2011 Appl. Phys. Lett. 99 013116
[51] Samvedi V and Tomar V 2009 Nanotechnology 20 365701
[52] Tao Y, Liu C, Chen W, Cai S, Chen C, Wei Z, Bi K, Yang J and Chen Y 2017 Phys. Lett. A 381 1899
[53] Song D, Jing D, Ma W and Zhang X 2019 J. Appl. Phys. 125 015103
[54] Ishibe T, Okuhata R, Kaneko T, Yoshiya M, Nakashima S, Ishida A and Nakamura Y 2021 Commun. Phys. 4 153
[1] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[2] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[3] Performance analysis of porous solar absorbers with high-temperature radiation cooling function
Haiyan Yu(于海燕), Anqi Chen(陈安琪), Mingdong Li(李明东), Ahali Hailati(阿哈里·海拉提), Xiaohu Wu(吴小虎), and Xiaohan Ren(任霄汉). Chin. Phys. B, 2025, 34(6): 068102.
[4] Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives
Xuanyi Yang(杨烜屹), Xin Huang(黄鑫), Chaoyang Zhang(张朝阳), Yanqing Wang(王延青), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2025, 34(5): 054401.
[5] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[6] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[7] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[8] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
[9] High peak power mini-array quantum cascade lasers operating in pulsed mode
Yuhang Zhang(章宇航), Yupei Wang(王渝沛), Xiaoyue Luo(罗晓玥), Chenhao Qian(钱晨灏), Yang Cheng(程洋), Wu Zhao(赵武), Fangyuan Sun(孙方圆), Jun Wang(王俊), and Zheng-Ming Sun(孙正明). Chin. Phys. B, 2025, 34(1): 014204.
[10] Plastic deformation mechanism of γ-phase U-Mo alloy studied by molecular dynamics simulations
Chang Wang(王畅), Peng Peng(彭芃), and Wen-Sheng Lai(赖文生). Chin. Phys. B, 2025, 34(1): 018101.
[11] Influence of temperature, stress, and grain size on behavior of nano-polycrystalline niobium
Yu-Ping Yan(晏玉平), Liu-Ting Zhang(张柳亭), Li-Pan Zhang(张丽攀), Gang Lu(芦刚), and Zhi-Xin Tu(涂志新). Chin. Phys. B, 2024, 33(7): 076201.
[12] Factors resisting protein adsorption on hydrophilic/hydrophobic self-assembled monolayers terminated with hydrophilic hydroxyl groups
Dangxin Mao(毛党新), Yuan-Yan Wu(吴园燕), and Yusong Tu(涂育松). Chin. Phys. B, 2024, 33(6): 068701.
[13] Molecular dynamics simulation of the flow mechanism of shear-thinning fluids in a microchannel
Gang Yang(杨刚), Ting Zheng(郑庭), Qihao Cheng(程启昊), and Huichen Zhang(张会臣). Chin. Phys. B, 2024, 33(4): 044701.
[14] Electronic effects on radiation damage in α-iron: A molecular dynamics study
Lin Jiang(江林), Min Li(李敏), Bao-Qin Fu(付宝勤), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2024, 33(3): 036103.
[15] Unveiling the early stage evolution of local atomic structures in the crystallization process of a metallic glass
Lin Ma(马琳), Xiao-Dong Yang(杨晓东), Feng Yang(杨锋), Xin-Jia Zhou(周鑫嘉), and Zhen-Wei Wu(武振伟). Chin. Phys. B, 2024, 33(3): 036402.
No Suggested Reading articles found!