Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 068102    DOI: 10.1088/1674-1056/add4e3
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications Prev   Next  

Performance analysis of porous solar absorbers with high-temperature radiation cooling function

Haiyan Yu(于海燕)1, Anqi Chen(陈安琪)1, Mingdong Li(李明东)1, Ahali Hailati(阿哈里 海拉提)1, Xiaohu Wu(吴小虎)2,†, and Xiaohan Ren(任霄汉)1,‡
1 Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China;
2 Thermal Science Research Center, Shandong Institute of Advanced Technology, Jinan 250100, China
Abstract  In order to meet the growing global energy demand and fulfill energy conservation and emission reduction goals, the efficient utilization of solar energy is becoming increasingly critical. However, the effects of high temperatures on solar absorption are rarely considered in practical research. Therefore, this study presents a porous zinc and silver sulfide solar absorber with high-temperature radiative cooling capabilities. The solar absorption rate and radiative cooling efficiency in the high-temperature range (636 K–1060 K) are computed using the finite-difference time-domain method. Furthermore, the impact of parameters such as characteristic length, porosity, incident angle, and pore shape factor on both the absorption rate and efficiency of the solar absorber is analyzed. The mechanism is further examined from the perspective of microscopic thermal radiation. The results show that, in the high-temperature range, the solar absorption rate increases with higher porosity and incident angles, reaching its peak when the characteristic length is 1 m. These findings highlight the significant potential of the solar absorber for efficient solar energy harvesting in photo-thermal conversion applications within a specific high-temperature range.
Keywords:  fishnet metamaterial      solar absorber      microscale thermal radiation      cooling radiation      thermal management  
Received:  05 March 2025      Revised:  24 April 2025      Accepted manuscript online:  07 May 2025
PACS:  81.16.Rf (Micro- and nanoscale pattern formation)  
  42.25.-p (Wave optics)  
  44.40.+a (Thermal radiation)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52406102) and Shandong Provincial Natural Science Foundation (Grant No. ZR2023QE258).

Cite this article: 

Haiyan Yu(于海燕), Anqi Chen(陈安琪), Mingdong Li(李明东), Ahali Hailati(阿哈里 海拉提), Xiaohu Wu(吴小虎), and Xiaohan Ren(任霄汉) Performance analysis of porous solar absorbers with high-temperature radiation cooling function 2025 Chin. Phys. B 34 068102

[1] Yang T R, LiuW, Kramer G J and Sun Q 2021 Renewable and Sustainable Energy Reviews 139110732
[2] WangW, Yuan B Q, Sun Q andWennersten R 2024 Journal of Thermal Science 331109
[3] Shahsavari A and Akbari M 2018 Renewable Sustainable Energy Reviews 90275
[4] Wang Y T, Wang M J, Wu X H, et al. 2024 Opto-Electron. Eng. 51240154
[5] Sharma S and Talukdar P 2024 Energy 304132070
[6] Farzan H D and Zaim E H 2023 Thermal Science Engineering Progress 38101680
[7] Zhang Y N, Chen Y G,Wang T, Zhu Q and GuM2024 Opto-Electronic Advances 7230194
[8] Qiao L F, Wang D, Zuo L J, Ye Y Q, Qian J, Chen H Z and He H L 2011 Applied Energy 88848
[9] Yang X, Zhang X F, Zhang T X, Xiang L Y, Xie B and Luo X B 2024 Opto-Electronic Advances 7240036
[10] Chen Z Y, Liu H T,Wu X H, et al. 2024 Opto-Electron. Eng. 51240128
[11] Bikbaev R G, Vetrov S Y and Timofeev I V 2020 Journal of Quantitative Spectroscopy Radiative Transfer 253107156
[12] Liang S R, Xu F, Li W X, Yang W X, Cheng S B, Yang H, Chen J, Yi Z and Jiang P P 2023 Applied Thermal Engineering 232121074
[13] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100207402
[14] Qin C Y, Zhu Q Z, Li X K, Sun C L, Chen M J and Wu X H 2022 Renewable Energy 19779
[15] Lin K-T, Lin H, Yang T S and Jia B H 2020 Nat. Commun. 111389
[16] Mastellone M, Bellucci A, Girolami M, Montereali R, Orlando S, Polini R, Serpente V, Sani E, Valentini V and Vincenti M A 2020 Optical Materials 107109967
[17] Li W X, Zhao W C, Cheng S B, Zhang H F, Yi Z, Sun T Y, Wu P H, Zeng Q D and Raza R 2024 Optics Lasers in Engineering 181108368
[18] Li W X, Yi Y T, Yang H, Cheng S B, Yang W X, Zhang H F, Yi T, Yi Y G and Li H L 2023 Commun. Theor. Phys. 75045503
[19] Xiao S Y, Liu T T, Wang X, Liu X J and Zhou C B 2020 Phys. Rev. B 102085410
[20] Wu J, Sun Y S, Wu B Y, Sun C L and Wu X H 2022 Solar Energy 23878
[21] Zhang Y J, Yi Y T, Li W X, Liang S R, Ma J, Cheng S B, Yang W X and YI YG 2023 Coatings 13531
[22] Pham N D, Singh A, Chen W, Hoang M T, Yang Y, Wang X D, Wolff A,Wen X M, Jia B H and Sonar P 2021 Journal of Materials Chemistry A 97508
[23] Agravat D, Patel S K, Almawgani A H, Alsuwian T, Armghan A and Daher M G 2024 Plasmonics 191071
[24] Zhao Y, Lu Y F, Chen L, Wei X F, Zhu J F and Zheng Y H 2020 ACS Applied Materials Interfaces 1246073
[25] Huang M H, Wei K H, Wu P H, Xu D Y and Xu Y 2021 Frontiers in Materials 8781803
[26] Yang F M, Liang Z Z, Shi X Y, Zhang X Q, Meng D J, Dai R, Zhang S T, Jia Y, Yan N T and Li S X 2023 Results in Physics 51106660
[27] Huang X, Yi Y T, Song Q J, Yi Z, Ma C, Tang C J, Zeng Q D, Cheng S B and Raza Ri 2024 Commun. Theor. Phys. 76115702
[28] Liu B, Xia X-L, Chen X and MaM2021 International Journal of Thermal Sciences 163106750
[29] Yu H Y, Zhang H C, Wang H M and Zhang D 2021 Energies 144158
[30] Kane Y 1966 IEEE Transactions on Antennas and Propagation 14302
[31] Bai X, Huang J, Rui H andWang S 2022 Journal of Computational and Applied Mathematics 416114590
[32] Yu H Y, Zhang H C, Su C S,Wang K X and Jin L 2018 Thermal Science 22629
[33] Yu H Y, Zhang H C, Dai Z N, et al. 2019 ES Energy & Environment 669
[34] Asif M, Afaq A, Amin M, Raouf K, Majeed A and Asif M 2023 Materials Today Communications 37106966
[35] Li J Q, Xia X L, Sun C, et al. 2023 Experimental Thermal and Fluid Science 148110996
[36] Yang HU, D’Archangel J, Sundheimer M L, Tucker E, Boreman G D and Raschke M B 2015 Phys. Rev. B 91235137
[37] Querry M R 1998 Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet
[38] Yu H Y, Zhang H C and Xia X L 2020 Journal of Thermal Analysis Calorimetry 141351
[39] Rodiet C, Remy B and Degiovanni A 2016 Infrared Physics & Technology 76444
[40] Guimarães T F, Lanchote A D, da Costa J S, Viçosa A L and de Freitas L 2015 Advanced Powder Technology 261094
[1] Finite element analysis of the impact of graphene filler dispersion on local hotspots in HMX-based PBX explosives
Xuanyi Yang(杨烜屹), Xin Huang(黄鑫), Chaoyang Zhang(张朝阳), Yanqing Wang(王延青), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2025, 34(5): 054401.
[2] High peak power mini-array quantum cascade lasers operating in pulsed mode
Yuhang Zhang(章宇航), Yupei Wang(王渝沛), Xiaoyue Luo(罗晓玥), Chenhao Qian(钱晨灏), Yang Cheng(程洋), Wu Zhao(赵武), Fangyuan Sun(孙方圆), Jun Wang(王俊), and Zheng-Ming Sun(孙正明). Chin. Phys. B, 2025, 34(1): 014204.
[3] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[4] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[5] Thermal conductivity of nanowires
Zhongwei Zhang(张忠卫), Jie Chen(陈杰). Chin. Phys. B, 2018, 27(3): 035101.
[6] Temperature-related performance of Yb3+:YAG disk lasers and optimum design for diamond cooling
Cao Ding-Xiang(曹丁象), Yu Hai-Wu(於海武), Zheng Wan-Guo(郑万国), He Shao-Bo(贺少勃), and Wang Xiao-Feng(王晓峰). Chin. Phys. B, 2006, 15(12): 2963-2969.
No Suggested Reading articles found!