Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097301    DOI: 10.1088/1674-1056/ade3ae
Special Issue: TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices Prev   Next  

Exciton insulators in two-dimensional systems

Huaiyuan Yang(杨怀远)1, Xi Dai(戴希)1,†, and Xin-Zheng Li(李新征)2,3,4,‡
1 Department of Physics, Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China;
2 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, China;
3 Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, China;
4 Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, China
Abstract  Electron-hole interactions play a crucial role in determining the optoelectronic properties of materials, and in low-dimensional systems this is especially true due to the decrease of screening. In this review, we focus on one unique quantum phase induced by the electron-hole interaction in two-dimensional systems, known as "exciton insulators" (EIs). Although this phase of matter has been studied for more than half a century, suitable platforms for its stable realization remain scarce. We provide an overview of the strategies to realize EIs in accessible materials and structures, along with a discussion on some unique properties of EIs stemming from the band structures of these materials. Additionally, signatures in experiments to distinguish EIs are discussed.
Keywords:  excitonic insulator      two-dimensional materials  
Received:  01 May 2025      Revised:  09 June 2025      Accepted manuscript online:  12 June 2025
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.22.Gk (Broken symmetry phases)  
  71.35.-y (Excitons and related phenomena)  
Fund: X.-Z. Li is supported by the National Key Research & Development Program of China (Grant Nos. 2022YFA1403500 and 2021YFA1400500) and the National Science Foundation of China (Grant Nos. 62321004, 12234001, and 12474215). The computational resources are provided by the supercomputer center at Peking University, China. X. Dai is supported by New Cornerstone Science Foundation and a fellowship and a CRF award from the Research Grants Council of the Hong Kong Special Administrative Region, China (Grant Nos. HKUST SRFS2324-6S01 and C7037-22GF).
Corresponding Authors:  Xi Dai, Xin-Zheng Li     E-mail:  daix@ust.hk;xzli@pku.edu.cn

Cite this article: 

Huaiyuan Yang(杨怀远), Xi Dai(戴希), and Xin-Zheng Li(李新征) Exciton insulators in two-dimensional systems 2025 Chin. Phys. B 34 097301

[1] Frenkel J 1931 Phys. Rev. 37 17
[2] Wannier G H 1937 Phys. Rev. 52 191
[3] Rohlfing M and Louie S G 2000 Phys. Rev. B 62 4927
[4] Chernikov A, Berkelbach T C, Hill H M, Rigosi A, Li Y, Aslan B, Reichman D R, Hybertsen M S and Heinz T F 2014 Phys. Rev. Lett. 113 076802
[5] Ugeda M M, Bradley A J, Shi S F, Da Jornada F H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z, Shen Z X, et al. 2014 Nat. Mater. 13 1091
[6] Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, et al. 2015 ACS Nano 9 11509
[7] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A 2016 Science 353 aac9439
[8] Kovalenko M V, Protesescu L and Bodnarchuk M I 2017 Science 358 745
[9] Girvin S M and Yang K 2019 Modern Condensed Matter Physics (Cambridge University Press)
[10] Keldysh L and Kopaev Y V 1965 Soviet Physics Solid State, USSR 6 2219
[11] Kohn W 1967 Phys. Rev. Lett. 19 439
[12] Jérome D, Rice T and Kohn W 1967 Phys. Rev. 158 462
[13] Halperin B and Rice T 1968 Rev. Mod. Phys. 40 755
[14] Murakami Y, Golež D, Kaneko T, Koga A, Millis A J and Werner P 2020 Phys. Rev. B 101 195118
[15] Golež D, Sun Z, Murakami Y, Georges A and Millis A J 2020 Phys. Rev. Lett. 125 257601
[16] Sun Z, Kaneko T, Golež D and Millis A J 2021 Phys. Rev. Lett. 127 127702
[17] Kaneko T, Sun Z, Murakami Y, Golež D and Millis A J 2021 Phys. Rev. Lett. 127 127402
[18] Shao Y and Dai X 2024 Phys. Rev. X 14 021047
[19] Yang H, Wang X and Li X Z 2022 New J. Phys. 24 083010
[20] Yang H, Shao Y, Xu Y, Dai X and Li X Z 2024 Phys. Rev. B 109 L201401
[21] Yang H, Zeng J, Shao Y, Xu Y, Dai X and Li X Z 2024 Phys. Rev. B 109 075167
[22] Du L, Li X, Lou W, Sullivan G, Chang K, Kono J and Du R R 2017 Nat. Commun. 8 1
[23] Wang R, Sedrakyan T A, Wang B, Du L and Du R R 2023 Nature 619 57
[24] Mazza G, Rösner M, Windgätter L, Latini S, Hübener H, Millis A J, Rubio A and Georges A 2020 Phys. Rev. Lett. 124 197601
[25] Jiang Z, Li Y, Zhang S and Duan W 2018 Phys. Rev. B 98 081408
[26] Jiang Z, Li Y, Duan W and Zhang S 2019 Phys. Rev. Lett. 122 236402
[27] Jiang Z, Lou W, Liu Y, Li Y, Song H, Chang K, Duan W and Zhang S 2020 Phys. Rev. Lett. 124 166401
[28] Sethi G, Zhou Y, Zhu L, Yang L and Liu F 2021 Phys. Rev. Lett. 126 196403
[29] Wang Z, Rhodes D A, Watanabe K, Taniguchi T, Hone J C, Shan J and Mak K F 2019 Nature 574 76
[30] Ma L, Nguyen P X, Wang Z, Zeng Y, Watanabe K, Taniguchi T, Mac- Donald A H, Mak K F and Shan J 2021 Nature 598 585
[31] Liu X, Li J,Watanabe K, Taniguchi T, Hone J, Halperin B I, Kim P and Dean C R 2022 Science 375 205
[32] Jia Y, Wang P, Chiu C L, Song Z, Yu G, Jäck B, Lei S, Klemenz S, Cevallos F A, Onyszczak M, et al. 2022 Nat. Phys. 18 87
[33] Sun B, Zhao W, Palomaki T, Fei Z, Runburg E, Malinowski P, Huang X, Cenker J, Cui Y T, Chu J H, et al. 2022 Nat. Phys. 18 94
[34] Gu J, Ma L, Liu S, Watanabe K, Taniguchi T, Hone J C, Shan J and Mak K F 2022 Nat. Phys. 18 395
[35] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 106 162
[36] Kozlov A N and Maksimov L A 1966 Sov. Phys. JETP 23 88
[37] Littlewood P, Eastham P, Keeling J, Marchetti F, Simons B and Szymanska M 2004 J. Phys.: Condens. Matter 16 S3597
[38] Bronold F X and Fehske H 2006 Phys. Rev. B 74 165107
[39] Phan V N, Becker K W and Fehske H 2010 Phys. Rev. B 81 205117
[40] Seki K, Eder R and Ohta Y 2011 Phys. Rev. B 84 245106
[41] Perfetto E, Sangalli D, Marini A and Stefanucci G 2019 Phys. Rev. Materials 3 124601
[42] Cercellier H, Monney C, Clerc F, Battaglia C, Despont L, Garnier M G, Beck H, Aebi P, Patthey L, Berger H and Forró L 2007 Phys. Rev. Lett. 99 146403
[43] Kogar A, Rak M S, Vig S, Husain A A, Flicker F, Joe Y I, Venema L, MacDougall G J, Chiang T C, Fradkin E, et al. 2017 Science 358 1314
[44] Wakisaka Y, Sudayama T, Takubo K, Mizokawa T, Arita M, Namatame H, Taniguchi M, Katayama N, NoharaMand Takagi H 2009 Phys. Rev. Lett. 103 026402
[45] Lu Y, Kono H, Larkin T, Rost A, Takayama T, Boris A, Keimer B and Takagi H 2017 Nat. Commun. 8 14408
[46] Mor S, Herzog M, Golez D, Werner P, Eckstein M, Katayama N, Nohara M, Takagi H, Mizokawa T, Monney C and Stahler J 2017 Phys. Rev. Lett. 119 086401
[47] Choi J H, Cui P, Lan H and Zhang Z 2015 Phys. Rev. Lett. 115 066403
[48] Jiang Z, Liu Z, Li Y and Duan W 2017 Phys. Rev. Lett. 118 266401
[49] Rasmussen F A and Thygesen K S 2015 The Journal of Physical Chemistry C 119 13169
[50] Thygesen K S 2017 2D Mater. 4 022004
[51] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
[52] Gao Q, Chan Yh, Jiao P, Chen H, Yin S, Tangprapha K, Yang Y, Li X, Liu Z, Shen D, et al. 2024 Nat. Phys. 20 597
[53] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[54] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[55] Liu C, Hughes T L, Qi X L, Wang K and Zhang S C 2008 Phys. Rev. Lett. 100 236601
[56] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[57] Kou L, Ma Y, Sun Z, Heine T and Chen C 2017 The Journal of Physical Chemistry Lett. 8 1905
[58] Lodge M S, Yang S A, Mukherjee S and Weber B 2021 Advanced Materials 33 2008029
[59] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[60] Dong S and Li Y 2023 Phys. Rev. B 107 235147
[61] Si C, Jin K H, Zhou J, Sun Z and Liu F 2016 Nano Lett. 16 6584
[62] Wang Y, Ji W, Zhang C, Li P, Zhang S, Wang P, Li S and Yan S 2017 Appl. Phys. Lett. 110 213101
[63] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[64] Deng J, Shao D, Gao J, Yue C, Weng H, Fang Z and Wang Z 2022 Phys. Rev. B 105 224103
[65] Zhou J, ShanWY, YaoWand Xiao D 2015 Phys. Rev. Lett. 115 166803
[66] Srivastava A and Imamoǧlu A 2015 Phys. Rev. Lett. 115 166802
[67] Chaudhary S, Knapp C and Refael G 2021 Phys. Rev. B 103 165119
[68] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[69] Yao Y and Fang Z 2005 Phys. Rev. Lett. 95 156601
[70] Mazza G, Rosner M, Windgatter L, Latini S, Hubener H, Millis A J, Rubio A and Georges A 2020 Phys. Rev. Lett. 124 197601
[71] Seradjeh B, Weber H and Franz M 2008 Phys. Rev. Lett. 101 246404
[72] Seradjeh B, Moore J E and Franz M 2009 Phys. Rev. Lett. 103 066402
[73] Wang R, Erten O, Wang B and Xing D 2019 Nat. Commun. 10 210
[74] Wu Y, Jiang H, Chen H, Liu H, Liu J and Xie X C 2022 Phys. Rev. Lett. 128 106804
[75] Perfetto E and Stefanucci G 2020 Phys. Rev. Lett. 125 106401
[76] Ponomarenko L, Geim A, Zhukov A, Jalil R, Morozov S, Novoselov K, Grigorieva I, Hill E, Cheianov V, Fal’ko V, et al. 2011 Nat. Phys. 7 958
[77] Liu X, Watanabe K, Taniguchi T, Halperin B I and Kim P 2017 Nat. Phys. 13 746
[78] Li J, Taniguchi T, Watanabe K, Hone J and Dean C 2017 Nat. Phys. 13 751
[79] Chen D, Lian Z, Huang X, Su Y, Rashetnia M, Ma L, Yan L, Blei M, Xiang L, Taniguchi T, et al. 2022 Nat. Phys. 18 1171
[80] Cao T, Wu M and Louie S G 2018 Phys. Rev. Lett. 120 087402
[81] Zhang X, Shan W Y and Xiao D 2018 Phys. Rev. Lett. 120 077401
[82] Glazov M M, Golub L E,Wang G, Marie X, Amand T and Urbaszek B 2017 Phys. Rev. B 95 035311
[83] Tabert C J and Nicol E J 2013 Phys. Rev. Lett. 110 197402
[84] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[85] Lu H Z, YaoW, Xiao D and Shen S Q 2013 Phys. Rev. Lett. 110 016806
[86] Gao Y, Yang S A and Niu Q 2014 Phys. Rev. Lett. 112 166601
[87] Yu H, Wu Y, Liu G B, Xu X and Yao W 2014 Phys. Rev. Lett. 113 156603
[88] McCann E and Fal’ko V I 2006 Phys. Rev. Lett. 96 086805
[89] Garate I and Franz M 2011 Phys. Rev. B 84 045403
[90] Zhu X, Littlewood P B, Hybertsen M S and Rice T M 1995 Phys. Rev. Lett. 74 1633
[91] Bronold F X and Fehske H 2006 Phys. Rev. B 74 165107
[92] Min H, Bistritzer R, Su J J and MacDonald A H 2008 Phys. Rev. B 78 121401
[93] Shim Y P and MacDonald A H 2009 Phys. Rev. B 79 235329
[94] Zhang J and Rossi E 2013 Phys. Rev. Lett. 111 086804
[95] Perali A, Neilson D and Hamilton A R 2013 Phys. Rev. Lett. 110 146803
[96] Conti S, Perali A, Peeters F M and Neilson D 2017 Phys. Rev. Lett. 119 257002
[97] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[98] Zhao Y, Qu H, Zhao J, Kang L and Zhou S 2025 Nano Lett. 25 1108
[99] Liu J, Qu H and Li Y 2024 New J. Phys. 26 103034
[100] Liu J and Li Y 2022 Phys. Rev. B 106 035135
[101] Dong S, Chen Y, Qu H, Lou W K and Chang K 2025 Phys. Rev. Lett. 134 066602
[1] Unique high-energy excitons in two-dimensional transition metal dichalcogenides
Yongsheng Gao(高永盛), Yuanzheng Li(李远征), Weizhen Liu(刘为振), Chuxin Yan(闫楚欣), Qingbin Wang(王庆彬), Wei Xin(辛巍), Haiyang Xu(徐海阳), and Yichun Liu(刘益春). Chin. Phys. B, 2025, 34(9): 097102.
[2] First-principles design of excitonic insulators: A review
Hongwei Qu(曲宏伟), Haitao Liu(刘海涛), and Yuanchang Li(李元昌). Chin. Phys. B, 2025, 34(9): 097101.
[3] Unveiling the thermal transport mechanisms in novel carbon-based graphene-like materials using machine-learning potential
Yao-Yuan Zhang(章耀元), Meng-Qiu Long(龙孟秋), Sai-Jie Cheng(程赛杰), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(6): 067101.
[4] GaInX3 (X = S, Se, Te): Ultra-low thermal conductivity and excellent thermoelectric performance
Zhi-Fu Duan(段志福), Chang-Hao Ding(丁长浩), Zhong-Ke Ding(丁中科), Wei-Hua Xiao(肖威华), Fang Xie(谢芳), Nan-Nan Luo(罗南南), Jiang Zeng(曾犟), Li-Ming Tang(唐黎明), and Ke-Qiu Chen(陈克求). Chin. Phys. B, 2024, 33(8): 087302.
[5] Surface doping manipulation of the insulating ground states in Ta2Pd3Te5 and Ta2Ni3Te5
Bei Jiang(江北), Jingyu Yao(姚静宇), Dayu Yan(闫大禹), Zhaopeng Guo(郭照芃), Gexing Qu(屈歌星), Xiutong Deng(邓修同), Yaobo Huang(黄耀波), Hong Ding(丁洪), Youguo Shi(石友国), Zhijun Wang(王志俊), and Tian Qian(钱天). Chin. Phys. B, 2024, 33(6): 067402.
[6] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[7] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[8] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[9] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[10] Corrigendum to “Atomic-scale electromagnetic theory bridging optics in microscopic world and macroscopic world”
Zhi-Yuan Li(李志远) and Jianfeng Chen(陈剑锋). Chin. Phys. B, 2024, 33(2): 029901.
[11] Ultrafast reconfigurable direct charge trapping devices based on few-layer MoS2
Hui Gao(高辉), Xuanye Liu(刘轩冶), Peng Song(宋鹏), Chijun Wei(尉驰俊), Nuertai Jiazila(努尔泰·加孜拉), Jiequn Sun(孙杰群), Kang Wu(吴康), Hui Guo(郭辉), Haitao Yang(杨海涛), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(12): 127201.
[12] Progress on two-dimensional ferrovalley materials
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新). Chin. Phys. B, 2024, 33(1): 017505.
[13] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[14] Magnetic and magnetotransport properties of layered TaCoTe2 single crystals
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2023, 32(12): 127303.
[15] Recent progress on two-dimensional ferroelectrics: Material systems and device applications
Zhiwei Fan(范芷薇), Jingyuan Qu(渠靖媛), Tao Wang(王涛), Yan Wen(温滟), Ziwen An(安子文), Qitao Jiang(姜琦涛), Wuhong Xue(薛武红), Peng Zhou(周鹏), and Xiaohong Xu(许小红). Chin. Phys. B, 2023, 32(12): 128508.
No Suggested Reading articles found!