|
|
Ultrafast reconfigurable direct charge trapping devices based on few-layer MoS2 |
Hui Gao(高辉)1,2, Xuanye Liu(刘轩冶)1,2, Peng Song(宋鹏)1,2, Chijun Wei(尉驰俊)1,2, Nuertai Jiazila(努尔泰cdot加孜拉)1,2, Jiequn Sun(孙杰群)1,2, Kang Wu(吴康)1,2, Hui Guo(郭辉)1,2,3, Haitao Yang(杨海涛)1,2,3,†, Lihong Bao(鲍丽宏)1,2,3,‡, and Hong-Jun Gao(高鸿钧)1,2,3 |
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Hefei National Laboratory, Hefei 230088, China |
|
|
Abstract Charge trapping devices incorporating 2D materials and high-$\kappa$ dielectrics have emerged as promising candidates for compact, multifunctional memory devices compatible with silicon-based manufacturing processes. However, traditional charge trapping devices encounter bottlenecks including complex device structure and low operation speed. Here, we demonstrate an ultrafast reconfigurable direct charge trapping device utilizing only a 30 nm-thick Al$_{2}$O$_{3}$ trapping layer with a MoS$_{2}$ channel, where charge traps reside within the Al$_{2}$O$_{3}$ bulk confirmed by transfer curves with different gate-voltage sweeping rates and photoluminescence (PL) spectra. The direct charging tapping device shows exceptional memory performance in both three-terminal and two-terminal operation modes characterized by ultrafast three-terminal operation speed ($\sim$300 ns), an extremely low OFF current of 10$^{-14}$ A, a high ON/OFF current ratio of up to 10$^{7}$, and stable retention and endurance properties. Furthermore, the device with a simple symmetrical structure exhibits $V_{\rm D}$ polarity-dependent reverse rectification behavior in the high resistance state (HRS), with a rectification ratio of 10$^{5}$. Additionally, utilizing the synergistic modulation of the conductance of the MoS$_{2}$ channel by $V_{\rm D}$ and $V_{\rm G}$, it achieves gate-tunable reverse rectifier and ternary logic capabilities.
|
Received: 30 September 2024
Revised: 02 November 2024
Accepted manuscript online: 05 November 2024
|
PACS:
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
73.40.Ei
|
(Rectification)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
Fund: This work was supported by the National Key Research & Development Project of China (Grant No. 2022YFA1204100), the National Natural Science Foundation of China (Grant No. 62488201), CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700). |
Corresponding Authors:
Haitao Yang, Lihong Bao
E-mail: htyang@iphy.ac.cn;lhbao@iphy.ac.cn
|
Cite this article:
Hui Gao(高辉), Xuanye Liu(刘轩冶), Peng Song(宋鹏), Chijun Wei(尉驰俊), Nuertai Jiazila(努尔泰cdot加孜拉), Jiequn Sun(孙杰群), Kang Wu(吴康), Hui Guo(郭辉), Haitao Yang(杨海涛), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧) Ultrafast reconfigurable direct charge trapping devices based on few-layer MoS2 2024 Chin. Phys. B 33 127201
|
[1] Jhang C J, Xue C X, Hung J M, Chang F C and Chang M F 2021 IEEE Trans. Circuits Syst. I Regul. Pap. 68 1773 [2] Yu S, Shim W, Peng X and Luo Y 2021 IEEE Trans. Circuits Syst. I Regul. Pap. 68 2753 [3] Meena J S, Sze S M, Chand U and Tseng T Y 2014 Nanoscale Res. Lett. 9 526 [4] Lee J D, Hur S H and Choi J D 2002 IEEE Electron Device Lett. 23 264 [5] Larcher L, Pavan P, Albani L and Ghilardi T 2001 IEEE Trans. Electron Devices 48 2081 [6] Chen W M, Swift C, Roberts D, Forbes K, Higman J, Maiti B, Paulson W and Chang K T 1997 Symposium on VLSI Technology p. 63 [7] Kahng D and Sze S M 1967 Bell Syst. Tech. J. 46 1288 [8] Chan T Y, Chen J, Ko P K and Hu C 1987 International Electron Devices Meeting p. 718 [9] Kim N S, Austin T, Baauw D, Mudge T, Flautner K, Hu J S, Irwin M J, Kandemir M and Narayanan V 2003 Computer 36 68 [10] Chhowalla M, Jena D and Zhang H 2016 Nat. Rev. Mater. 1 16052 [11] Fjeldly T A and Shur M 1993 IEEE Trans. Electron Devices 40 137 [12] Lai S C, Lue H T, Yang M J, Hsieh J Y, Wang S Y, Wu T B, Luo G L, Chien C H, Lai E K, Hsieh K Y, Liu R and Lu C Y 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop p. 88 [13] Tsai P H, Chang-Liao K S, Liu T C, Wang T K, Tzeng P J, Lin C H, Lee L S and Tsai M J 2009 IEEE Electron Device Lett. 30 775 [14] Zhang E,Wang W, Zhang C, Jin Y, Zhu G, Sun Q, Zhang DW, Zhou P and Xiu F 2015 ACS Nano 9 612 [15] Hou X, Yan X, Liu C, Ding S, Zhang DWand Zhou P 2018 Semicond. Sci. Technol. 33 034001 [16] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [17] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P and Javey A 2016 Science 354 99 [18] Xiao J, Kang Z, Liu B, Zhang X, Du J, Chen K, Yu H, Liao Q, Zhang Z and Zhang Y 2022 Nano Res. 15 475 [19] Wu F, Tian H, Shen Y, Hou Z, Ren J, Gou G, Sun Y, Yang Y and Ren T L 2022 Nature 603 259 [20] Liu Y, Duan X, Shin H J, Park S, Huang Y and Duan X 2021 Nature 591 43 [21] Liu H, Neal A T and Ye P D 2012 ACS Nano 6 8563 [22] Yang F S, Li M, Lee M P, Ho I Y, Chen J Y, Ling H, Li Y, Chang J K, Yang S H, Chang Y M, Lee K C, Chou Y C, Ho C H, Li W, Lien C H and Lin Y F 2020 Nat. Commun. 11 2972 [23] Wen J, Tang W, Kang Z, Liao Q, Hong M, Du J, Zhang X, Yu H, Si H, Zhang Z and Zhang Y 2021 Adv. Sci. 8 2101417 [24] Xiong X, Kang J, Liu S, Tong A, Fu T, Li X, Huang R and Wu Y 2022 Adv. Mater. 34 2270335 [25] Widiapradja L J, Nam T, Jeong Y, Jin H J, Lee Y, Kim K, Lee S, Kim H, Bae H and Im S 2021 Adv. Electron. Mater. 7 2100074 [26] Cao DW, Yan Y,Wang M N, Luo G L, Zhao J R, Zhi J K, Xia C X and Liu Y F 2024 Adv. Funct. Mater. 34 2314649 [27] Tian H, Deng B, Chin M L, Yan X, Jiang H, Han S J, Sun V, Xia Q, Dubey M, Xia F and Wang H 2016 ACS Nano 10 10428 [28] Huang X, Liu C, Tang Z, Zeng S, Wang S and Zhou P 2023 Nat. Nanotechnol. 18 486 [29] Zhang Z C, Li Y, Li J, Chen X D, Yao BW, YuMX, Lu T B and Zhang J 2021 Adv. Funct. Mater. 31 2102571 [30] Specht M, Reisinger H, Stadele M, Hofmann F, Gschwandtner A, Landgraf E, Luyken R J, Schulz T, Hartwich J, Dreeskornfeld L, Rosner W, Kretz J and Risch L 2003 ESSDERC ’03. 33rd Conference on European Solid-State Device Research p. 155 [31] Specht M, Reisinger H, Hofmann F, Schulz T, Landgraf E, Luyken R J, Rösner W, Grieb M and Risch L 2005 Solid-State Electron. 49 716 [32] Shen Y, Zhang Z, Zhang Q,Wei F, Yin H,Wei Q and Men K 2020 RSC Adv. 10 7812 [33] You H W and Cho W J 2010 Appl. Phys. Lett. 96 093506 [34] Chen Q, Yang X, Li Z, Bi J, Xi K, Zhang Z, Zhai P, Sun Y and Liu J 2023 Chin. Phys. B 32 096102 [35] Sun X, Zhang Y, Jia K, Tian G, Yu J, Xiang J, Yang R, Wu Z and Yin H 2022 Chin. Phys. B 31 077701 [36] Robertson J 2004 Eur. Phys. J. Appl. Phys. 28 265 [37] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243 [38] Kingon A I, Maria J P and Streiffer S K 2000 Nature 406 1032 [39] Zhou Y, Fu J, Chen Z, Zhuge F, Wang Y, Yan J, Ma S, Xu L, Yuan H, Chan M, Miao X, He Y and Chai Y 2023 Nat. Electron. 6 870 [40] Wang H, Bao L, Guzman R, Wu K, Wang A, Liu L, Wu L, Chen J, Huan Q, Zhou W, Pantelides S T and Gao H J 2023 Adv. Mater. 35 2301067 [41] Li D, Chen M, Sun Z, Yu P, Liu Z, Ajayan P M and Zhang Z 2017 Nat. Nanotechnol. 12 901 [42] Li D, Chen M, Zong Q and Zhang Z 2017 Nano Lett. 17 6353 [43] Late D J, Liu B, Matte H S S R, Dravid V P and Rao C N R 2012 ACS Nano 6 5635 [44] Shin M, Lee M J, Yoon C, Kim S, Park B H, Lee S and Park J G 2021 J. Korean Phys. Soc 78 816 [45] Yang K, Chen Y, Wang S, Han T and Liu H 2021 Nanotechnology 32 305201 [46] KimW, Javey A, Vermesh O,Wang Q, Li Y and Dai H 2003 Nano Lett. 3 193 [47] Ding G, Yang B, Chen R S, MoWA, Zhou K, Liu Y, Shang G, Zhai Y, Han S T and Zhou Y 2021 Small 17 2103175 [48] Maeng J, Park W, Choe M, Jo G, Kahng Y H and Lee T 2009 Appl. Phys. Lett. 95 123101 [49] Xiong K, Robertson J and Clark S J 2006 Appl. Phys. Lett. 89 022907 [50] Mootheri V, Leonhardt A, Verreck D, Asselberghs I, Huyghebaert C, de Gendt S, Radu I, Lin D and Heyns M 2021 Nanotechnology 32 135202 [51] Ryou J, Kim Y S, Kc S and Cho K 2016 Sci. Rep. 6 29184 [52] Liu Y C, Tan X, Shen T C and Gu F X 2022 Chin. Phys. B 31 087803 [53] Zhang Y, Shao Y Y, Lu X B, Zeng M, Zhang Z, Gao X S, Zhang X J, Liu J M and Dai J Y 2014 Appl. Phys. Lett. 105 172902 [54] Ielmini D 2009 Microelectron. Eng. 86 1870 [55] Prall K 2007 22nd IEEE Non-Volatile Semiconductor Memory Workshop p. 5 [56] Degraeve R, Cho M, Govoreanu B, Kaczer B, Zahid M B, Houdt J V, Jurczak M and Groeseneken G 2008 IEEE International Electron Devices Meeting p. 1 [57] Illarionov Y Y, Knobloch T, Jech M, Lanza M, Akinwande D, Vexler M I, Mueller T, Lemme M C, Fiori G, Schwierz F and Grasser T 2020 Nat. Commun. 11 3385 [58] Liu D, Guo Y, Lin L and Robertson J 2013 J. Appl. Phys. 114 083704 [59] Lue H T, Du P Y, Chen C P, Chen W C, Hsieh C C, Hsiao Y H, Shih Y H and Lu C Y 2012 International Electron Devices Meeting p. 9.1.1 [60] Hattori Y, Taniguchi T,Watanabe K and Nagashio K 2018 Phys. Rev. B 97 045425 [61] Rowlinson B D, Zeng J, Patzig C, Ebert M and Chong H M H 2025 J. Phys. D: Appl. Phys. 58 025308 [62] Strand J W, Cottom J, Larcher L and Shluger A L 2020 Phys. Rev. B 102 014106 [63] Yu T, Liu Z, Wang Y, Zhang L, Hou S, Wan Z, Yin J, Gao X, Wu L, Xia Y and Liu Z 2023 Sci. Rep. 13 5865 [64] Vu Q A, Shin Y S, Kim Y R, Nguyen V L, Kang W T, Kim H, Luong D H, Lee I M, Lee K, Ko D S, Heo J, Park S, Lee Y H and YuWJ 2016 Nat. Commun. 7 12725 [65] Danial L, Pikhay E, Herbelin E,Wainstein N, Gupta V,Wald N, Roizin Y, Daniel R and Kvatinsky S 2019 Nat. Electron. 2 596 [66] Di Bartolomeo A, Grillo A, Urban F, Iemmo L, Giubileo F, Luongo G, Amato G, Croin L, Sun L, Liang S J and Ang L K 2018 Adv. Funct. Mater. 28 1800657 [67] Jariwala D, Sangwan V K, Wu C C, Prabhumirashi P L, Geier M L, Marks T J, Lauhon L J and Hersam M C 2013 Proc. Natl. Acad. Sci. USA 110 18076 [68] Besslich P W and Trachtenberg E A 1992 Proceedings The Twenty- Second International Symposium on Multiple-Valued Logic p. 348 [69] Han J, Son J, Ryu S, Cho K and Kim S 2024 Sci. Rep. 14 6446 [70] Lee C, Lee C, Lee S, Choi J, Yoo H and Im S G 2023 Nat. Commun. 14 3757 [71] Jiang W, Xie B, Liu C C and Shi Y 2019 Nat. Electron. 2 376 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|