|
|
|
Acoustic detection of high-resistance states in gated bilayer graphene devices |
| Guo-Quan Qin(秦国铨)1,2,3, Yi-Bo Wang(王奕博)1,2,3, Guo-Sheng Lei(雷国盛)1,2,3, Zhuo-Zhi Zhang(张拙之)1,2,3, Xiang-Xiang Song(宋骧骧)1,2,3,†, and Guo-Ping Guo(郭国平)1,3,4 |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China; 3 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 4 Origin Quantum Computing Company Limited, Hefei 230088, China |
|
|
|
|
Abstract Applying a perpendicular electric field to bilayer graphene (BLG) induces an electrically tunable bandgap, so that insulating states with resistances exceeding $\sim {{10}}^{{8}} { \Omega }$ can be generated. These high-resistance states pinch off the conducting channel, thereby enabling high-quality gated devices for classical and quantum electronics. However, it is challenging to precisely quantify these states electrically due to their high resistances, especially when different areas of the device are operated in different high-resistance states. Here, taking advantage of the strong acoustoelectric effect, we demonstrate the detection of these high-resistance states in a multi-gated BLG device using surface acoustic waves. Under different gating configurations, the device is operated in different high-resistance states. Although these states have similar resistances of $\sim {{10}}^{{8}} { \Omega }$, we show their acoustoelectric responses exhibit pronounced differences, thereby allowing the acoustic detection. More interestingly, we demonstrate that when the conducting channel is pinched off by one top gate, we are still able to acoustically, but not electrically, detect the gating effect of another top gate. Our results reveal the powerful capability and the promising future of acoustically characterizing BLG and other two-dimensional materials, especially their electronic states with high resistances.
|
Received: 13 May 2025
Revised: 06 June 2025
Accepted manuscript online: 06 June 2025
|
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
| |
43.38.Rh
|
(Surface acoustic wave transducers)
|
| |
72.50.+b
|
(Acoustoelectric effects)
|
|
| Fund: Project supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20240123), the National Key Research and Development Program of China (Grant No. 2022YFA1405900), and the National Natural Science Foundation of China (Grant Nos. 12274397, 12274401, and 12034018). |
Corresponding Authors:
Xiang-Xiang Song
E-mail: songxx90@ustc.edu.cn
|
Cite this article:
Guo-Quan Qin(秦国铨), Yi-Bo Wang(王奕博), Guo-Sheng Lei(雷国盛), Zhuo-Zhi Zhang(张拙之), Xiang-Xiang Song(宋骧骧), and Guo-Ping Guo(郭国平) Acoustic detection of high-resistance states in gated bilayer graphene devices 2025 Chin. Phys. B 34 097201
|
[1] Zhang Y, Tang T T, Girit C, et al. 2009 Nature 459 820 [2] Taychatanapat T and Jarillo-Herrero P 2010 Phys. Rev. Lett. 105 166601 [3] Varlet A, Liu M H, Krueckl V, et al. 2014 Phys. Rev. Lett. 113 116601 [4] Oostinga J. B, Heersche H B, Liu X, et al. 2008 Nat. Mater. 7 151 [5] Icking E, Banszerus L, Wörtche F, et al. 2022 Adv. Electron. Mater. 8 2200510 [6] Icking E, Emmerich D, Watanabe K, et al. 2024 Nano Lett. 24 11454 [7] Tong C, Garreis R, Knothe A, et al. 2021 Nano Lett. 21 1068 [8] Banszerus L, Rothstein A, Fabian T, et al. 2020 Nano Lett. 20 7709 [9] Tong C, Kurzmann A, Garreis R, et al. 2022 Phys. Rev. Lett. 128 067702 [10] Jing F M, Zhang Z Z, Qin G Q, et al. 2022 Adv. Quantum Technol. 5 2100162 [11] Wixforth A, Kotthaus J P and Weimann G 1986 Phys. Rev. Lett. 56 2104 [12] Wixforth A, Scriba J,Wassermeier M, et al. 1989 Phys. Rev. B 40 7874 [13] Efros A L and Galperin Y M 1990 Phys. Rev. Lett. 64 1959 [14] Parmenter R H 1953 Phys. Rev. 89 990 [15] Rotter M, Wixforth A, Ruile W, et al. 1998 Appl. Phys. Lett. 73 2128 [16] Hackett L, Miller M, Brimigion F, et al. 2021 Nat. Commun. 12 2769 [17] Hackett L, Miller M, Weatherred S, et al. 2023 Nat. Electron. 6 76 [18] Wu M, Liu X, Wang R, et al. 2024 Phys. Rev. Lett. 132 076501 [19] Friess B, Peng Y, Rosenow B, et al. 2017 Nat. Phys. 13 1124 [20] Paalanen M A,Willett R L, Littlewood P B, et al. 1992 Phys. Rev. B 45 11342 [21] Willett R L,West KWand Pfeiffer L N 2002 Phys. Rev. Lett. 88 066801 [22] Wang J, Pfeiffer L. N, West K W, et al. 2020 Phys. Rev. B 101 165413 [23] Friess B, Umansky V, von Klitzing K and Smet J H 2018 Phys. Rev. Lett. 120 137603 [24] Friess B, Dmitriev I A, Umansky V, et al. 2020 Phys. Rev. Lett. 124 117601 [25] Preciado E, Schülein F J R, Nguyen A E, et al. 2015 Nat. Commun. 6 8593 [26] Miseikis V, Cunningham J E, Saeed K, et al. 2012 Appl. Phys. Lett. 100 133105 [27] Fang Y, Xu Y, Kang K, et al. 2023 Phys. Rev. Lett. 130 246201 [28] Nie X, Wu X, Wang Y, et al. 2023 Nanoscale Horizons 8 158 [29] Mou Y, Wang J, Chen H, et al. 2025 Phys. Rev. Lett. 134 096301 [30] Zhao P, Sharma C H, Liang R, et al. 2022 Phys. Rev. Lett. 128 256601 [31] Mou Y, Liu Q, Liu J, et al. 2025 Nano Lett. 25 4029 [32] Wang L, Meric I, Huang P Y, et al. 2013 Science 342 614 [33] Purdie D. G, Pugno N M, Taniguchi T, et al. 2018 Nat. Commun. 9 5387 [34] Pizzocchero F, Gammelgaard L, Jessen B S, et al. 2016 Nat. Commun. 7 11894 [35] Zheng S, Zhang H, Feng Z, et al. 2016 Appl. Phys. Lett. 109 183110 [36] Tang C C, Chen Y F, Ling D. C, et al. 2017 J. Appl. Phys. 121 124505 [37] Liou Y. T, Hernández-Mínguez A, Herfort J, et al. 2017 J. Phys. D: Appl. Phys. 50 464008 [38] Yokoi M, Fujiwara S, Kawamura T, et al. 2020 Sci. Adv. 6 eaba1377 [39] Kalameitsev A V, Kovalev V M and Savenko I G 2019 Phys. Rev. Lett. 122 256801 [40] Mou Y, Chen H, Liu J, et al. 2024 Nano Lett. 24 4625 [41] McCann E and Koshino M 2013 Rep. Prog. Phys. 76 056503 [42] Du R, Liu M H, Mohrmann J, et al. 2018 Phys. Rev. Lett. 121 127706 [43] Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195 [44] Seiler A. M, Geisenhof F. R, Winterer F, et al. 2022 Nature 608 298 [45] Liu K, Zheng J, Sha Y, et al. 2024 Nat. Nanotechnol. 19 188 [46] Han T, Lu Z, Scuri G, et al. 2024 Nat. Nanotechnol. 19 181 [47] Jing F M, Qin G Q, Zhang Z Z, et al. 2023 Appl. Phys. Lett. 123 184001 [48] Song X X, Liu D, Mosallanejad V, et al. 2015 Nanoscale 7 16867 [49] Banszerus L, Möller S, Hecker K, et al. 2023 Nature 618 51 [50] Qin G Q, Jing F M, Hao T Y, et al. 2025 Phys. Rev. Lett. 134 036301 [51] Eich M, Herman F, Pisoni R, et al. 2018 Phys. Rev. X 8 031023 [52] Jing F M, Shen Z X, Qin G Q, et al. 2025 Phys. Rev. Applied 23 044053 [53] Garreis R, Tong C, Terle J, et al. 2024 Nat. Phys. 20 428 [54] Denisov A O, Reckova V, Cances S, et al. 2025 Nat. Nanotechnol. 20 494 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|