Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097201    DOI: 10.1088/1674-1056/ade1c6
RAPID COMMUNICATION Prev   Next  

Acoustic detection of high-resistance states in gated bilayer graphene devices

Guo-Quan Qin(秦国铨)1,2,3, Yi-Bo Wang(王奕博)1,2,3, Guo-Sheng Lei(雷国盛)1,2,3, Zhuo-Zhi Zhang(张拙之)1,2,3, Xiang-Xiang Song(宋骧骧)1,2,3,†, and Guo-Ping Guo(郭国平)1,3,4
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China;
3 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
4 Origin Quantum Computing Company Limited, Hefei 230088, China
Abstract  Applying a perpendicular electric field to bilayer graphene (BLG) induces an electrically tunable bandgap, so that insulating states with resistances exceeding $\sim {{10}}^{{8}} { \Omega }$ can be generated. These high-resistance states pinch off the conducting channel, thereby enabling high-quality gated devices for classical and quantum electronics. However, it is challenging to precisely quantify these states electrically due to their high resistances, especially when different areas of the device are operated in different high-resistance states. Here, taking advantage of the strong acoustoelectric effect, we demonstrate the detection of these high-resistance states in a multi-gated BLG device using surface acoustic waves. Under different gating configurations, the device is operated in different high-resistance states. Although these states have similar resistances of $\sim {{10}}^{{8}} { \Omega }$, we show their acoustoelectric responses exhibit pronounced differences, thereby allowing the acoustic detection. More interestingly, we demonstrate that when the conducting channel is pinched off by one top gate, we are still able to acoustically, but not electrically, detect the gating effect of another top gate. Our results reveal the powerful capability and the promising future of acoustically characterizing BLG and other two-dimensional materials, especially their electronic states with high resistances.
Keywords:  bilayer graphene      surface acoustic waves      acoustoelectric effects      high-resistance states  
Received:  13 May 2025      Revised:  06 June 2025      Accepted manuscript online:  06 June 2025
PACS:  72.80.Vp (Electronic transport in graphene)  
  43.38.Rh (Surface acoustic wave transducers)  
  72.50.+b (Acoustoelectric effects)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20240123), the National Key Research and Development Program of China (Grant No. 2022YFA1405900), and the National Natural Science Foundation of China (Grant Nos. 12274397, 12274401, and 12034018).
Corresponding Authors:  Xiang-Xiang Song     E-mail:  songxx90@ustc.edu.cn

Cite this article: 

Guo-Quan Qin(秦国铨), Yi-Bo Wang(王奕博), Guo-Sheng Lei(雷国盛), Zhuo-Zhi Zhang(张拙之), Xiang-Xiang Song(宋骧骧), and Guo-Ping Guo(郭国平) Acoustic detection of high-resistance states in gated bilayer graphene devices 2025 Chin. Phys. B 34 097201

[1] Zhang Y, Tang T T, Girit C, et al. 2009 Nature 459 820
[2] Taychatanapat T and Jarillo-Herrero P 2010 Phys. Rev. Lett. 105 166601
[3] Varlet A, Liu M H, Krueckl V, et al. 2014 Phys. Rev. Lett. 113 116601
[4] Oostinga J. B, Heersche H B, Liu X, et al. 2008 Nat. Mater. 7 151
[5] Icking E, Banszerus L, Wörtche F, et al. 2022 Adv. Electron. Mater. 8 2200510
[6] Icking E, Emmerich D, Watanabe K, et al. 2024 Nano Lett. 24 11454
[7] Tong C, Garreis R, Knothe A, et al. 2021 Nano Lett. 21 1068
[8] Banszerus L, Rothstein A, Fabian T, et al. 2020 Nano Lett. 20 7709
[9] Tong C, Kurzmann A, Garreis R, et al. 2022 Phys. Rev. Lett. 128 067702
[10] Jing F M, Zhang Z Z, Qin G Q, et al. 2022 Adv. Quantum Technol. 5 2100162
[11] Wixforth A, Kotthaus J P and Weimann G 1986 Phys. Rev. Lett. 56 2104
[12] Wixforth A, Scriba J,Wassermeier M, et al. 1989 Phys. Rev. B 40 7874
[13] Efros A L and Galperin Y M 1990 Phys. Rev. Lett. 64 1959
[14] Parmenter R H 1953 Phys. Rev. 89 990
[15] Rotter M, Wixforth A, Ruile W, et al. 1998 Appl. Phys. Lett. 73 2128
[16] Hackett L, Miller M, Brimigion F, et al. 2021 Nat. Commun. 12 2769
[17] Hackett L, Miller M, Weatherred S, et al. 2023 Nat. Electron. 6 76
[18] Wu M, Liu X, Wang R, et al. 2024 Phys. Rev. Lett. 132 076501
[19] Friess B, Peng Y, Rosenow B, et al. 2017 Nat. Phys. 13 1124
[20] Paalanen M A,Willett R L, Littlewood P B, et al. 1992 Phys. Rev. B 45 11342
[21] Willett R L,West KWand Pfeiffer L N 2002 Phys. Rev. Lett. 88 066801
[22] Wang J, Pfeiffer L. N, West K W, et al. 2020 Phys. Rev. B 101 165413
[23] Friess B, Umansky V, von Klitzing K and Smet J H 2018 Phys. Rev. Lett. 120 137603
[24] Friess B, Dmitriev I A, Umansky V, et al. 2020 Phys. Rev. Lett. 124 117601
[25] Preciado E, Schülein F J R, Nguyen A E, et al. 2015 Nat. Commun. 6 8593
[26] Miseikis V, Cunningham J E, Saeed K, et al. 2012 Appl. Phys. Lett. 100 133105
[27] Fang Y, Xu Y, Kang K, et al. 2023 Phys. Rev. Lett. 130 246201
[28] Nie X, Wu X, Wang Y, et al. 2023 Nanoscale Horizons 8 158
[29] Mou Y, Wang J, Chen H, et al. 2025 Phys. Rev. Lett. 134 096301
[30] Zhao P, Sharma C H, Liang R, et al. 2022 Phys. Rev. Lett. 128 256601
[31] Mou Y, Liu Q, Liu J, et al. 2025 Nano Lett. 25 4029
[32] Wang L, Meric I, Huang P Y, et al. 2013 Science 342 614
[33] Purdie D. G, Pugno N M, Taniguchi T, et al. 2018 Nat. Commun. 9 5387
[34] Pizzocchero F, Gammelgaard L, Jessen B S, et al. 2016 Nat. Commun. 7 11894
[35] Zheng S, Zhang H, Feng Z, et al. 2016 Appl. Phys. Lett. 109 183110
[36] Tang C C, Chen Y F, Ling D. C, et al. 2017 J. Appl. Phys. 121 124505
[37] Liou Y. T, Hernández-Mínguez A, Herfort J, et al. 2017 J. Phys. D: Appl. Phys. 50 464008
[38] Yokoi M, Fujiwara S, Kawamura T, et al. 2020 Sci. Adv. 6 eaba1377
[39] Kalameitsev A V, Kovalev V M and Savenko I G 2019 Phys. Rev. Lett. 122 256801
[40] Mou Y, Chen H, Liu J, et al. 2024 Nano Lett. 24 4625
[41] McCann E and Koshino M 2013 Rep. Prog. Phys. 76 056503
[42] Du R, Liu M H, Mohrmann J, et al. 2018 Phys. Rev. Lett. 121 127706
[43] Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195
[44] Seiler A. M, Geisenhof F. R, Winterer F, et al. 2022 Nature 608 298
[45] Liu K, Zheng J, Sha Y, et al. 2024 Nat. Nanotechnol. 19 188
[46] Han T, Lu Z, Scuri G, et al. 2024 Nat. Nanotechnol. 19 181
[47] Jing F M, Qin G Q, Zhang Z Z, et al. 2023 Appl. Phys. Lett. 123 184001
[48] Song X X, Liu D, Mosallanejad V, et al. 2015 Nanoscale 7 16867
[49] Banszerus L, Möller S, Hecker K, et al. 2023 Nature 618 51
[50] Qin G Q, Jing F M, Hao T Y, et al. 2025 Phys. Rev. Lett. 134 036301
[51] Eich M, Herman F, Pisoni R, et al. 2018 Phys. Rev. X 8 031023
[52] Jing F M, Shen Z X, Qin G Q, et al. 2025 Phys. Rev. Applied 23 044053
[53] Garreis R, Tong C, Terle J, et al. 2024 Nat. Phys. 20 428
[54] Denisov A O, Reckova V, Cances S, et al. 2025 Nat. Nanotechnol. 20 494
[1] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[2] Effect of interlayer bonded bilayer graphene on friction
Yao-Long Li(李耀隆), Zhen-Guo Tian(田振国), Hai-Feng Yin(尹海峰), and Ren-Liang Zhang(张任良). Chin. Phys. B, 2024, 33(8): 086103.
[3] Wafer-scale 30° twisted bilayer graphene epitaxially grown on Cu0.75Ni0.25 (111)
Peng-Cheng Ma(马鹏程), Ao Zhang(张翱), Hong-Run Zhen(甄洪润), Zhi-Cheng Jiang(江志诚), Yi-Chen Yang(杨逸尘), Jian-Yang Ding(丁建阳), Zheng-Tai Liu(刘正太), Ji-Shan Liu(刘吉山), Da-Wei Shen(沈大伟), Qing-Kai Yu(于庆凯), Feng Liu(刘丰), Xue-Fu Zhang(张学富), and Zhong-Hao Liu(刘中灏). Chin. Phys. B, 2024, 33(6): 066101.
[4] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[5] Valley-dependent transport in a mescoscopic twisted bilayer graphene device
Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017205.
[6] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[7] Temperature and strain sensitivities of surface and hybrid acoustic wave Brillouin scattering in optical microfibers
Yi Liu(刘毅), Yuanqi Gu(顾源琦), Yu Ning(宁钰), Pengfei Chen(陈鹏飞), Yao Yao(姚尧),Yajun You(游亚军), Wenjun He(贺文君), and Xiujian Chou(丑修建). Chin. Phys. B, 2022, 31(9): 094208.
[8] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[9] Observation of quadratic magnetoresistance in twisted double bilayer graphene
Yanbang Chu(褚衍邦), Le Liu(刘乐), Yiru Ji(季怡汝), Jinpeng Tian(田金朋), Fanfan Wu(吴帆帆), Jian Tang(汤建), Yalong Yuan(袁亚龙), Yanchong Zhao(赵岩翀), Xiaozhou Zan(昝晓州), Rong Yang(杨蓉), Kenji Watanabe, Takashi Taniguchi, Dongxia Shi(时东霞), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(10): 107201.
[10] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[11] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[12] Progress on band structure engineering of twisted bilayer and two-dimensional moirè heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
[13] Twistronics in graphene-based van der Waals structures
Ya-Ning Ren(任雅宁), Yu Zhang(张钰), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2020, 29(11): 117303.
[14] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[15] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
No Suggested Reading articles found!