|
Special Issue:
TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices
|
| TOPICAL REVIEW — Exciton physics: Fundamentals, materials and devices |
Prev
Next
|
|
|
Regulation strategies of hot carrier cooling process in perovskite nanocrystals |
| Zhenyao Tan(谭振耀)1,†, Kexin Xu(徐可欣)1,†, Yi Chen(陈逸)1, Can Ren(任璨)2,‡, and Tingchao He(贺廷超)1,§ |
1 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China; 2 School of Artificial Intelligence, Shenzhen Polytechnic University, Shenzhen 518055, China |
|
|
|
|
Abstract Recent breakthroughs in hot carrier (HC) cooling dynamics within halide perovskite nanocrystals (NCs) have positioned them as promising candidates for next-generation optoelectronic applications. Therefore, it is of great importance to systematically summarize advances in understanding and controlling HC relaxation mechanisms. Here, we offer an overview of advances in the understanding of the HC cooling process in perovskite NCs, with a focus on influences of excitation energy, excitation intensity, composition, size, dimensionality, doping, and core-shell structure on the HC cooling times. Finally, we propose suggestions for future investigations into the HC cooling process in perovskite NCs.
|
Received: 29 April 2025
Revised: 06 June 2025
Accepted manuscript online: 09 June 2025
|
|
PACS:
|
73.21.La
|
(Quantum dots)
|
| |
33.50.Dq
|
(Fluorescence and phosphorescence spectra)
|
| |
63.20.kd
|
(Phonon-electron interactions)
|
| |
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62475169 and 62174079), the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2025A1515011195), the Guangdong Provincial Quantum Science Strategic Initiative (Grant No. GDZX2404006), the Shenzhen Science and Technology Program (Grant Nos. JCYJ20240813143212016 and JCYJ20231122200233001), and the Post-doctoral Later-stage Foundation Project of Shenzhen Polytechnic University (Grant No. 6024271003K). |
Corresponding Authors:
Can Ren, Tingchao He
E-mail: rencan@szpu.edu.cn;tche@szu.edu.cn
|
Cite this article:
Zhenyao Tan(谭振耀), Kexin Xu(徐可欣), Yi Chen(陈逸), Can Ren(任璨), and Tingchao He(贺廷超) Regulation strategies of hot carrier cooling process in perovskite nanocrystals 2025 Chin. Phys. B 34 097302
|
[1] Kim Y H, Park J, Kim S, Kim J S, Xu H, Jeong S H, Hu B and Lee T W 2022 Nat. Nanotechnol. 17 590 [2] Ko P K, Chen D, Li C H A, Chan C C S, Sergeev A, Ding P, Lam D, Ouyang B, Guo L, Wong K S and Halpert J E 2024 Chem. Mater. 36 3735 [3] Liao Q, Jin X and Fu H 2019 Adv. Opt. Mater. 7 1900099 [4] Liu A, Guan G, Chai X, Feng N, Lu M, Bai X and Zhang Y 2022 Laser Photonics Rev. 16 2200189 [5] Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636 [6] Zhang X, Xiao S, Wang X, He T and Chen R 2023 Chin. Phys. B 32 064212 [7] Polavarapu L, Nickel B, Feldmann J and Urban A S 2017 Adv. Energy Mater. 7 1700267 [8] Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V and Rogach A L 2017 ACS Energy Lett. 2 2071 [9] Nie Z, Gao X, Ren Y, Xia S, Wang Y, Shi Y, Zhao J and Wang Y 2020 Nano Lett. 20 4610 [10] Villamil Franco C, Trippé-Allard G, Mahler B, Cornaggia C, Lauret J S, Gustavsson T and Cassette E 2022 J. Phys. Chem. Lett. 13 393 [11] Ahmed I, Shi L, Pasanen H, Vivo P, Maity P, Hatamvand M and Zhan Y 2021 Light-Sci. Appl. 10 174 [12] Hintermayr V A, Polavarapu L, Urban A S and Feldmann J 2018 ACS Nano 12 10151 [13] Brinkmann K O,Wang P, Lang F, LiW, Guo X, Zimmermann F, Olthof S, Neher D, Hou Y, Stolterfoht M, Wang T, Djurišić A B and Riedl T 2024 Nat. Rev. Mater. 9 202 [14] Wetzelaer G J A H, Scheepers M, Sempere A M, Momblona C, Avila J and Bolink H J 2015 Adv. Mater. 27 1837 [15] Chan C C S, Fan K, Wang H, Huang Z, Novko D, Yan K, Xu J, Choy WC H, Lončarić I andWong K S 2021 Adv. Energy Mater. 11 2003071 [16] Wang H I, Infante I, Brinck S t, Cánovas E and Bonn M 2018 Nano Lett. 18 5111 [17] Dursun I, Maity P, Yin J, Turedi B, Zhumekenov A A, Lee K J, Mohammed O F and Bakr O M 2019 Adv. Energy Mater. 9 1900084 [18] Zhou Z, Wu Y, He J, Frauenheim T and Prezhdo O V 2024 J. Am. Chem. Soc. 146 29905 [19] Li M, Bhaumik S, Goh T W, Kumar M S, Yantara N, Grätzel M, Mhaisalkar S, Mathews N and Sum T C 2017 Nat. Commun. 8 14350 [20] Chen K, Barker A J, Morgan F L C, Halpert J E and Hodgkiss J M 2015 Phys. Chem. Lett. 6 153 [21] Yang Y, Ostrowski D P, France R M, Zhu K, van de Lagemaat J, Luther J M and Beard M C 2016 Nat. Photonics 10 53 [22] Shi H, Zhang X, Li R and Zhang X 2023 Nanomaterials 13 3134 [23] Mondal N, Carwithen B P and Bakulin A A 2023 Light-Sci. Appl. 12 1 [24] Dai L, Ye J and Greenham N C 2023 Light-Sci. Appl. 12 208 [25] Tekelenburg E K, Camargo F V A, Filippetti A, Mattoni A, van de Ven L J M, Pitaro M, Cerullo G and Loi M A 2025 Adv. Mater. 37 2411892 [26] Zhu L, Zhao R, Zhuang R, Wu T, Xie L and Hua Y 2022 EcoMat 5 e12313 [27] Chen J, Messing M E, Zheng K and Pullerits T 2019 J. Am. Chem. Soc. 141 3532 [28] Paul K K, Kim J H and Lee Y H 2021 Nat. Rev. Phys. 3 178 [29] Marjit K, Das A, Ghosh D and Patra A 2024 ChemNanoMat 10 e202300629 [30] Niu W, Chen R, Pang T, Zheng Y, Wu T, Zhang R and Chen D 2024 Adv. Opt. Mater. 12 2400307 [31] Forde A, Inerbaev T, Hobbie E K and Kilin D S 2019 J. Am. Chem. Soc. 141 4388 [32] Kaur G and Ghosh H N 2020 Phys. Chem. Lett. 11 8765 [33] Li M, Fu J, Xu Q and Sum T C 2019 Adv. Mater. 31 1802486 [34] Fu J, Xu Q, Han G, Wu B, Huan C H A, Leek M L and Sum T C 2017 Nat. Commun. 8 1300 [35] Nie Z, Huang Z, Zhang M, Wu B, Wu H, Shi Y, Wu K and Wang Y 2022 ACS Photonics 9 3457 [36] Wei Q, Yin J, Bakr O M, Wang Z, Wang C, Mohammed O F, Li M and Xing G 2021 Angew. Chem. Int. Ed. 60 10957 [37] Maity P, Merdad N A, Yin J, Lee K J, Sinatra L, Bakr O M and Mohammed O F 2021 ACS Energy Lett. 6 2602 [38] Faber T, Filipovic L and Koster L J A 2024 J. Phys. Chem. Lett. 15 12601 [39] Cong M, Yang B, Chen J, Hong F, Yang S, DengW and Han K 2020 J. Phys. Chem. Lett. 11 1921 [40] Shukla A, Kaur G, Babu K J, Ghorai N, Goswami T, Kaur A and Ghosh H N 2020 J. Phys. Chem. Lett. 11 6344 [41] Li M, Begum R, Fu J, Xu Q, Koh T M, Veldhuis S A, Grätzel M, Mathews N, Mhaisalkar S and Sum T C 2018 Nat. Commun. 9 4197 [42] Meng J, Lan Z, Lin W, Liang M, Zou X, Zhao Q, Geng H, Castelli I E, Canton S E, Pullerits T and Zheng K 2022 Chem. Sci. 13 1734 [43] Zhang Y, Lou X, Chi X,Wang Q, Sui N, Kang Z, Zhou Q, Zhang H, Li L and Wang Y 2021 J. Lumines. 239 118332 [44] Papagiorgis P, Protesescu L, Kovalenko M V, Othonos A and Itskos G 2017 J. Phys. Chem. C 121 12434 [45] Hopper T R, Gorodetsky A, Jeong A, Krieg F, Bodnarchuk M I, Maimaris M, Chaplain M, Macdonald T J, Huang X, Lovrincic R, Kovalenko M V and Bakulin A A 2020 Nano Lett. 20 2271 [46] Ye J, Mondal N, Carwithen B P, Zhang Y, Dai L, Fan X B, Mao J, Cui Z, Ghosh P, Otero-Martinez C, van Turnhout L, Huang Y T, Yu Z, Chen Z, Greenham N C, Stranks S D, Polavarapu L, Bakulin A, Rao A and Hoye R L Z 2024 Nat. Commun. 15 8120 [47] Dai L, Deng Z, Auras F, Goodwin H, Zhang Z,Walmsley J C, Bristowe P D, Deschler F and Greenham N C 2021 Nat. Photonics 15 696 [48] Yang J, Wen X, Xia H, Sheng R, Ma Q, Kim J, Tapping P, Harada T, Kee T W, Huang F, Cheng Y B, Green M, Ho-Baillie A, Huang S, Shrestha S, Patterson R and Conibeer G 2017 Nat. Commun. 8 14120 [49] Marjit K, Francis A G, Pati S K and Patra A 2023 J. Phys. Chem. Lett. 14 10900 [50] Shrivastava M, Bodnarchuk M I, Hazarika A, Luther J M, Beard M C, Kovalenko M V and Adarsh K V 2020 Adv. Opt. Mater. 8 2001016 [51] Zhu H, Miyata K, Fu Y, Wang J, Joshi P P, Niesner D, Williams K W, Jin S and Zhu X Y 2016 Science 353 1409 [52] Zhu X Y and Podzorov V 2015 Phys. Chem. Lett. 6 4758 [53] Li H, Wang Q, Oteki Y, Ding C, Liu D, Guo Y, Li Y, Wei Y, Wang D, Yang Y, Masuda T, Chen M, Zhang Z, Sogabe T, Hayase S, Okada Y, Iikubo S and Shen Q 2023 Adv. Mater. 35 2301834 [54] Ji X, Lu R and Yu A 2023 J. Phys. Chem. C 127 19579 [55] Huang Y, Guo C, Gao L, Du W, Zheng H, Wu D, Zhao Z, Zhang C W, Wang Q, Liu X F, Yan Q and Jiang Y 2024 Chin. Phys. B 33 107304 [56] Li Y, Ding T, Luo X, Tian Y, Lu X and Wu K 2020 Chem. Mater. 32 549 [57] Hopper T R, Gorodetsky A, Frost J M, Müller C, Lovrincic R and Bakulin A A 2018 ACS Energy Lett. 3 2199 [58] Qin Y, Li J, Hu J and He T 2024 J. Phys. Chem. C 128 1202 [59] Kim T, Jung S I, Ham S, Chung H and Kim D 2019 Small 15 1900355 [60] Li J, Guo Z, Xiao S, Tu Y, He T and Zhang W 2022 Inorg. Chem. 61 4735 [61] Zhao F, Li J, Yu J, Guo Z, Xiao S, Gao Y, Pan R, He T and Chen R 2020 J. Phys. Chem. C 124 27169 [62] Butkus J, Vashishtha P, Chen K, Gallaher J K, Prasad S K K, Metin D Z, Laufersky G, Gaston N, Halpert J E and Hodgkiss J M 2017 Chem. Mater. 29 3644 [63] Kawai H, Giorgi G, Marini A and Yamashita K 2015 Nano Lett. 15 3103 [64] Soetan N, Puretzky A, Reid K, Boulesbaa A, Zarick H F, Hunt A, Rose O, Rosenthal S, Geohegan D B and Bardhan R 2018 ACS Photonics 5 3575 [65] Wright A D, Verdi C, Milot R L, Eperon G E, Pérez-OsorioMA, Snaith H J, Giustino F, Johnston M B and Herz L M 2016 Nat. Commun. 7 11755 [66] Oriel E H, Dirin D N, Shcherbak K, Bodnarchuk M I, Kovalenko M V, Chen L X and Schaller R D 2024 J. Phys. Chem. Lett. 15 6062 [67] Lim J W M, Guo Y, Feng M, Cai R and Sum T C 2024 J. Am. Chem. Soc. 146 437 [68] Cho K, Tahara H, Yamada T, Suzuura H, Tadano T, Sato R, Saruyama M, Hirori H, Teranishi T and Kanemitsu Y 2022 Nano Lett. 22 7674 [69] Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A and Bawendi M G 2000 Science 287 1011 [70] Yu B, Chen L, Qu Z, Zhang C, Qin Z, Wang X and Xiao M 2021 J. Phys. Chem. Lett. 12 238 [71] Strandell D P, Zenatti D, Nagpal P, Ghosh A, Dirin D N, Kovalenko M V and Kambhampati P 2024 ACS Nano 18 1054 [72] Baker H, Perez C M, Sonnichsen C, Strandell D, Prezhdo O V and Kambhampati P 2023 ACS Nano 17 3913 [73] Carwithen B P, Hopper T R, Ge Z, Mondal N, Wang T, Mazlumian R, Zheng X, Krieg F, Montanarella F, Nedelcu G, Kroll M, Siguan M A, Frost J M, Leo K, Vaynzof Y, Bodnarchuk M I, Kovalenko M V and Bakulin A A 2023 ACS Nano 17 6638 [74] Diroll B T and Schaller R D 2019 Adv. Funct. Mater. 29 1901725 [75] Li Y, Lai R, Luo X, Liu X, Ding T, Lu X and Wu K 2019 Chem. Sci. 10 5983 [76] Boehme S C, Brinck S t, Maes J, Yazdani N, Zapata F, Chen K, Wood V, Hodgkiss J M, Hens Z, Geiregat P and Infante I 2020 Nano Lett. 20 1819 [77] Telfah H, Jamhawi A, Teunis M B, Sardar R and Liu J 2017 J. Phys. Chem. C 121 28556 [78] Tao W, Zhang Y and Zhu H 2022 Accounts Chem. Res. 55 345 [79] El-Ballouli A a O, Bakr OMand Mohammed O F 2020 J. Phys. Chem. Lett. 11 5705 [80] Zhang X, Gao X, Pang G, He T, Xing G and Chen R 2019 J. Phys. Chem. C 123 28893 [81] Zhu Y, Luo S, Zhang Y, Liu Y, He Y, Li T, Chi Z and Guo L 2024 Nanoscale 17 584 [82] Marjit K, Ghosh G, Ghosh S, Sain S, Ghosh A and Patra A 2021 J. Phys. Chem. C 125 12214 [83] Sun Q, Gong J, Yan X, Wu Y, Cui R, Tian W, Jin S and Wang Y 2022 Nano Lett. 22 2995 [84] Zhuang X, Sun R, Zhou D, Liu S, Wu Y, Shi Z, Zhang Y, Liu B, Chen C, Liu D and Song H 2022 Adv. Funct. Mater. 32 2110346 [85] Bose S, Sharma A, Mahato S, Maurya N C, Roy B, Srivastava S K, Adarsh K V and Ray S K 2024 Appl. Phys. Lett. 124 011901 [86] Marjit K, Ghosh G, Biswas R K, Ghosh S, Pati S K and Patra A 2022 J. Phys. Chem. Lett. 13 5431 [87] Zhou Z, He J, Frauenheim T, Prezhdo O V and Wang J 2022 J. Am. Chem. Soc. 144 18126 [88] Zhang C, Chen J, Kong L, Wang L, Wang S, Chen W, Mao R, Turyanska L, Jia G and Yang X 2021 Adv. Funct. Mater. 31 2100438 [89] Ahmed G H, Yin J, Bakr O M and Mohammed O F 2021 ACS Energy Lett. 6 1340 [90] Reiss P, Protière M and Li L 2009 Small 5 154 [91] Kaur G, Justice Babu K, Ghorai N, Goswami T, Maiti S and Ghosh H N 2019 Phys. Chem. Lett. 10 5302 [92] Kaur G, Shukla A, Babu K J and Ghosh H N 2022 Chem. Rec. 22 e202200106 [93] Li J, Guo Z, Xiao S, Tu Y, He T and Zhang W 2022 Inorg. Chem. Front. 9 2980 [94] Ren Y, Nie Z, Deng F, Wang Z, Xia S and Wang Y 2021 Nanoscale 13 292 [95] Gao Y, Cui Y, Li J, Xu Y, Hu J and He T 2022 J. Phys. Chem. C 126 6694 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|