Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087302    DOI: 10.1088/1674-1056/add5cf
RAPID COMMUNICATION Prev   Next  

Manipulating the magnetic properties of MnBi2Te4 through electrochemical organic molecule intercalation

Yu Du(杜钰)1,4, Heng Zhang(张恒)1, Fuwei Zhou(周福伟)1, Tianqi Wang(王天奇)1, Jiajun Li(李佳骏)1, Wuyi Qi(戚无逸)1, Yiying Zhang (张祎颖)1, Yefan Yu(俞业凡)1, Fucong Fei(费付聪)1,†, and Fengqi Song(宋凤麒)1,2,3,‡
1 National Laboratory of Solid State Microstructures, School of Physics, School of Materials Science and Intelligent Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Physical Science Research Center, Nanjing University, Nanjing 210093, China;
2 Atom Manufacturing Institute, Nanjing 211806, China;
3 Suzhou Laboratory, Suzhou 215000, China;
4 Suzhou Polytechnic University, Suzhou 215104, China
Abstract  MnBi$_{2}$Te$_{4}$, which is emerging as an intrinsic antiferromagnetic (AFM) topological insulator, provides a unique platform to investigate the interplay between magnetism and topology. Modulating its magnetic properties enables the observation of exotic quantum phenomena such as the quantum anomalous Hall effect, axion insulator states, and Majorana fermions. While the intercalation of Bi$_{2}$Te$_{3}$ can tune its magnetism, synthesizing pure-phase MnBi$_{2}$Te$_{4}$ with uniform Bi$_{2}$Te$_{3}$ intercalation remains challenging, and the fixed interlayer spacing of Bi$_{2}$Te$_{3}$ limits magnetic coupling tunability. Here, we utilize electrochemical organic molecule intercalation to expand the van der Waals gap of MnBi$_{2}$Te$_{4}$ and modulate its magnetic properties. Through x-ray diffraction (XRD) characterizations, we confirm that the interlayer spacing of MnBi$_{2}$Te$_{4}$ is expanded from 13.6 Å to 30.5 Å and 61.0 Å by intercalating quaternary ammonium cations (THA$^{+}$ and CTA$^{+}$), respectively. The THA-MnBi$_{2}$Te$_{4}$ exhibits dual complex magnetic behavior, combining AFM ordering with a Néel temperature ($T_{\rm N}$) of 12 K and a small ferromagnetic hysteresis loop at 2 K. The CTA-MnBi$_{2}$Te$_{4}$ shows robust ferromagnetism, with a Curie point ($T_{\rm C}$) of 15 K, similar to that of the MnBi$_{2}$Te$_{4}$ monolayer. These results demonstrate that remarkable changes in the magnetic properties of MnBi$_{2}$Te$_{4}$ can be achieved via electrochemical intercalation, providing new insights into manipulating magnetism in layered magnetic materials.
Keywords:  topological insulators      electrochemical intercalation      magnetism tuning      van der Waals magnetic materials  
Received:  07 April 2025      Revised:  01 May 2025      Accepted manuscript online:  08 May 2025
PACS:  73.50.-h (Electronic transport phenomena in thin films)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.50.Pp (Magnetic semiconductors)  
  82.45.Aa (Electrochemical synthesis)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1402404 and 2023YFA1406304), the National Natural Science Foundation of China (Grant Nos. 92161201, T2221003, 12104221, 12104220, 12274208, 12025404, 12004174, 91961101, T2394473, 62274085, 12374043, and U2032208), the Natural Science Foundation of Jiangsu Province (Grant Nos. BK20230079, BK20243013, and BK20233001), and the Fundamental Research Funds for the Central Universities (Grant Nos. 020414380192 and 2024300432).
Corresponding Authors:  Fucong Fei, Fengqi Song     E-mail:  feifucong@nju.edu.cn;songfengqi@nju.edu.cn

Cite this article: 

Yu Du(杜钰), Heng Zhang(张恒), Fuwei Zhou(周福伟), Tianqi Wang(王天奇), Jiajun Li(李佳骏), Wuyi Qi(戚无逸), Yiying Zhang (张祎颖), Yefan Yu(俞业凡), Fucong Fei(费付聪), and Fengqi Song(宋凤麒) Manipulating the magnetic properties of MnBi2Te4 through electrochemical organic molecule intercalation 2025 Chin. Phys. B 34 087302

[1] Yu R, ZhangW, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
[2] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[3] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[4] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[5] Li H, Ruan S and Zeng Y J 2019 Adv. Mater. 31 1900065
[6] Wang Q H, Bedoya Pinto A, et al. 2022 ACS Nano 16 6960
[7] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, BaoW,Wang C,Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[8] Huang B, Clark G, Navarro Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo Herrero P and Xu X 2017 Nature 546 270
[9] Tan C, Lee J, Jung S G, Park T, Albarakati S, Partridge J, Field M R, McCulloch D G, Wang L and Lee C 2018 Nat. Commun. 9 1554
[10] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q and Kloc C 2016 ACS Nano 10 1738
[11] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[12] O’Hara D J, Zhu T, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W and Kawakami R K 2018 Nano Lett. 18 3125
[13] Otrokov M M, Klimovskikh I I, Bentmann H, et al. 2019 Nature 576 416
[14] Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K and He K 2019 Chin. Phys. Lett. 36 076801
[15] Aliev Z S, Amiraslanov I R, Nasonova D I, Shevelkov A V, Abdullayev N A, Jahangirli Z A, Orujlu E N, Otrokov M M, Mamedov N T, Babanly M B and Chulkov E V 2019 J. Alloys Compd. 789 443
[16] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401
[17] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W and Xu Y 2019 Sci. Adv. 5 eaaw5685
[18] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater. 19 522
[19] Yan J Q, Zhang Q, Heitmann T, Huang Z, Chen K Y, Cheng J G, Wu W, Vaknin D, Sales B C and McQueeney R J 2019 Phys. Rev. Mater. 3 064202
[20] Zeugner A, Nietschke F, Wolter A U B, Gaß S, Vidal R C, Peixoto T R F, Pohl D, Damm C, Lubk A, Hentrich R, Moser S K, Fornari C, Min C H, Schatz S, Kißner K, Unzelmann M, Kaiser M, Scaravaggi F, Rellinghaus B, Nielsch K, Hess C, Büchner B, Reinert F, Bentmann H, Oeckler O, Doert T, Ruck M and Isaeva A 2019 Chem. Mater. 31 2795
[21] Lee S H, Zhu Y, Wang Y, Miao L, Pillsbury T, Yi H, Kempinger S, Hu J, Heikes C A, Quarterman P, Ratcliff W, Borchers J A, Zhang H, Ke X, Graf D, Alem N, Chang C Z, Samarth N and Mao Z 2019 Phys. Rev. Res. 1 012011
[22] OtrokovMM, Rusinov I P, Blanco Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202
[23] Chen B, Fei F, Zhang D, Zhang B, Liu W, Zhang S, Wang P, Wei B, Zhang Y, Zuo Z, Guo J, Liu Q,Wang Z,Wu X, Zong J, Xie X, ChenW, Sun Z, Wang S, Zhang Y, Zhang M, Wang X, Song F, Zhang H, Shen D and Wang B 2019 Nat. Commun. 10 4469
[24] Hao Y J, Liu P, Feng Y, Ma X M, Schwier E F, Arita M, Kumar S, Hu C, Lu R e, Zeng M, Wang Y, Hao Z, Sun H Y, Zhang K, Mei J, Ni N, Wu L, Shimada K, Chen C, Liu Q and Liu C 2019 Phys. Rev. X 9 041038
[25] Chen Y J, Xu L X, Li J H, Li Y W, Wang H Y, Zhang C F, Li H, Wu Y, Liang A J, Chen C, Jung S W, Cacho C, Mao Y H, Liu S, Wang M X, Guo Y F, Xu Y, Liu Z K, Yang L X and Chen Y L 2019 Phys. Rev. X 9 041040
[26] Li H, Gao S Y, Duan S F, Xu Y F, Zhu K J, Tian S J, Gao J C, Fan W H, Rao Z C, Huang J R, Li J J, Yan D Y, Liu Z T, Liu W L, Huang Y B, Li Y L, Liu Y, Zhang G B, Zhang P, Kondo T, Shin S, Lei H C, Shi Y G, Zhang W T, Weng H M, Qian T and Ding H 2019 Phys. Rev. X 9 041039
[27] Li B, Yan J Q, Pajerowski D M, Gordon E, Nedić A M, Sizyuk Y, Ke L, Orth P P, Vaknin D and McQueeney R J 2020 Phys. Rev. Lett. 124 167204
[28] Li H, Liu S, Liu C, Zhang J, Xu Y, Yu R, Wu Y, Zhang Y and Fan S 2020 Phys. Chem. Chem. Phys. 22 556
[29] Klimovskikh I I, Otrokov M M, Estyunin D, et al. 2020 npj Quantum Mater. 5 54
[30] Li J, Yin Z C, Li Q X and Zhu J J 2025 Chin. Phys. B 34 037501
[31] Zhong D, Seyler K L, Linpeng X, Cheng R, Sivadas N, Huang B, Schmidgall E, Taniguchi T, Watanabe K, McGuire M A, Yao W, Xiao D, Fu K M C and Xu X 2017 Sci. Adv. 3 e1603113
[32] Rhone T D, Chen W, Desai S, Torrisi S B, Larson D T, Yacoby A and Kaxiras E 2020 Sci. Rep. 10 15795
[33] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[34] Sun H, Xia B, Chen Z, Zhang Y, Liu P, Yao Q, Tang H, Zhao Y, Xu H and Liu Q 2019 Phys. Rev. Lett. 123 096401
[35] Hu C, Gordon K N, Liu P, Liu J, Zhou X, Hao P, Narayan D, Emmanouilidou E, Sun H, Liu Y, Brawer H, Ramirez A P, Ding L, Cao H, Liu Q, Dessau D and Ni N 2020 Nat. Commun. 11 97
[36] Tian S, Gao S, Nie S, Qian Y, Gong C, Fu Y, Li H, Fan W, Zhang P, Kondo T, Shin S, Adell J, Fedderwitz H, Ding H, Wang Z, Qian T and Lei H 2020 Phys. Rev. B 102 035144
[37] Hu C, Ding L, Gordon K N, Ghosh B, Tien H J, Li H, Linn A G, Lien S W, Huang C Y, Mackey S, Liu J, Reddy P V S, Singh B, Agarwal A, Bansil A, Song M, Li D, Xu S Y, Lin H, Cao H, Chang T R, Dessau D and Ni N 2020 Sci. Adv. 6 eaba4275
[38] Deng H, Chen Z, Wołós A, Konczykowski M, Sobczak K, Sitnicka J, Fedorchenko I V, Borysiuk J, Heider T, Pluciński Ł, Park K, Georgescu A B, Cano J and Krusin Elbaum L 2021 Nat. Phys. 17 36
[39] Shi MZ, Lei B, Zhu C S, Ma D H, Cui J H, Sun Z L, Ying J J and Chen X H 2019 Phys. Rev. B 100 155144
[40] Ding L, Hu C, Feng E, Jiang C, Kibalin I A, Gukasov A, Chi M, Ni N and Cao H 2021 J. Phys. D: Appl. Phys. 54 174003
[41] Wu J, Liu F, Sasase M, Ienaga K, Obata Y, Yukawa R, Horiba K, Kumigashira H, Okuma S, Inoshita T and Hosono H 2019 Sci. Adv. 5 eaax9989
[42] Hu Y, Xu L, Shi M, Luo A, Peng S, Wang Z Y, Ying J J, Wu T, Liu Z K, Zhang C F, Chen Y L, Xu G, Chen X H and He J F 2020 Phys. Rev. B 101 161113
[43] Xu L, Mao Y,Wang H, Li J, Chen Y, Xia Y, Li Y, Pei D, Zhang J, Zheng H, Huang K, Zhang C, Cui S, Liang A, Xia W, Su H, Jung S, Cacho C, Wang M, Li G, Xu Y, Guo Y, Yang L, Liu Z, Chen Y and Jiang M 2020 Sci. Bull. 65 2086
[44] Jo N H, Wang L L, Slager R J, Yan J, Wu Y, Lee K, Schrunk B, Vishwanath A and Kaminski A 2020 Phys. Rev. B 102 045130
[45] Rienks E D L, Wimmer S, Sánchez Barriga J, Caha O, Mandal P S, R°uzička J, Ney A, Steiner H, Volobuev V V, Groiss H, Albu M, Kothleitner G, Michalička J, Khan S A, Minár J, Ebert H, Bauer G, Freyse F, Varykhalov A, Rader O and Springholz G 2019 Nature 576 423
[46] Tan A, Labracherie V, Kunchur N,Wolter A U B, Cornejo J, Dufouleur J, Büchner B, Isaeva A and Giraud R 2020 Phys. Rev. Lett. 124 197201
[47] Vidal R C, Bentmann H, Facio J I, Heider T, Kagerer P, Fornari C I, Peixoto T R F, Figgemeier T, Jung S, Cacho C, Büchner B, van den Brink J, Schneider C M, Plucinski L, Schwier E F, Shimada K, Richter M, Isaeva A and Reinert F 2021 Phys. Rev. Lett. 126 176403
[48] Lu R, Sun H, Kumar S,Wang Y, Gu M, Zeng M, Hao Y J, Li J, Shao J, Ma X M, Hao Z, Zhang K, Mansuer W, Mei J, Zhao Y, Liu C, Deng K, Huang W, Shen B, Shimada K, Schwier E F, Liu C, Liu Q and Chen C 2021 Phys. Rev. X 11 011039
[49] Zhong H, Bao C, Wang H, Li J, Yin Z, Xu Y, Duan W, Xia T L and Zhou S 2021 Nano Lett. 21 6080
[50] Hu C, Qian T and Ni N 2023 Natl. Sci. Rev. 11
[51] Yang S, Xu X, Zhu Y, Niu R, Xu C, Peng Y, Cheng X, Jia X, Huang Y, Xu X, Lu J and Ye Y 2021 Phys. Rev. X 11 011003
[52] Lee D S, Kim T H, Park C H, Chung C Y, Lim Y S, Seo W S and Park H H 2013 Cryst. Eng. Comm. 15 5532
[53] Li J, Wang C, Zhang Z, Gu B L, Duan W and Xu Y 2019 Phys. Rev. B 100 121103
[54] Xie H, Wang D, Cai Z, Chen B, Guo J, Naveed M, Zhang S, Zhang M, Wang X, Fei F, Zhang H and Song F 2020 Appl. Phys. Lett. 116 221902
[1] High-efficiency Yb3+-doped fiber laser with highly optical nonlinear Bi4Br4-based saturable absorber
Mengyuan Liu(刘梦媛), Yechao Han(韩烨超), Qi Liu(刘齐), Hao Teng(滕浩), Xiwei Huang(黄玺玮), Xiaowei Xing(邢笑伟), Xiangyu Qiao(乔向宇), Guojing Hu(胡国静), Xiao Lin(林晓), Haitao Yang(杨海涛), Zhiyi Wei(魏志义), and Wenjun Liu(刘文军). Chin. Phys. B, 2025, 34(6): 064202.
[2] Topological edge and corner states of valley photonic crystals with zipper-like boundary conditions
Yun-Feng Shen(沈云峰), Xiao-Fang Xu(许孝芳), Ming Sun(孙铭), Wen-Ji Zhou(周文佶), and Ya-Jing Chang(常雅箐). Chin. Phys. B, 2024, 33(4): 044203.
[3] Magneto-optical Kerr and Faraday effects in bilayer antiferromagnetic insulators
Wan-Qing Zhu(朱婉情) and Wen-Yu Shan(单文语). Chin. Phys. B, 2023, 32(8): 087802.
[4] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[5] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[6] Superconductivity at 44.4 K achieved by intercalating EMIM+ into FeSe
Jinhua Wang(王晋花), Qing Li(李庆), Wei Xie(谢威), Guanyu Chen(陈冠宇), Xiyu Zhu(祝熙宇), and Hai-Hu Wen(闻海虎). Chin. Phys. B, 2021, 30(10): 107402.
[7] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[8] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[9] Electrical spin polarization through spin-momentum locking in topological-insulator nanostructures
Minhao Zhang(张敏昊), Xuefeng Wang(王学锋), Fengqi Song(宋凤麒), Rong Zhang(张荣). Chin. Phys. B, 2018, 27(9): 097307.
[10] Synthesis and magnetotransport properties of Bi2Se3 nanowires
Kang Zhang(张亢), Haiyang Pan(潘海洋), Zhongxia Wei(魏仲夏), Minhao Zhang(张敏昊), Fengqi Song(宋风麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(9): 096101.
[11] Two-dimensional materials for ultrafast lasers
Fengqiu Wang(王枫秋). Chin. Phys. B, 2017, 26(3): 034202.
[12] Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3
Minhao Zhang(张敏昊), Yan Li(李焱), Fengqi Song(宋凤麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(12): 127305.
[13] Two-dimensional topological insulators with large bulk energy gap
Z Q Yang(杨中强), Jin-Feng Jia(贾金锋), Dong Qian(钱冬). Chin. Phys. B, 2016, 25(11): 117312.
[14] Topological insulator nanostructures and devices
Xiu Fa-Xian (修发贤), Zhao Tong-Tong (赵彤彤). Chin. Phys. B, 2013, 22(9): 096104.
[15] Topological properties of one-dimensional hardcore Bose-Fermi mixture
Jia Yong-Fei (贾永飞), Guo Huai-Ming (郭怀明), Qin Ji-Hong (秦吉红), Chen Zi-Yu (陈子瑜), Feng Shi-Ping (冯世平). Chin. Phys. B, 2013, 22(9): 090308.
No Suggested Reading articles found!