Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(8): 087102    DOI: 10.1088/1674-1056/28/8/087102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials

Yuqing He(贺雨晴)1,2, Yi Jiang(蒋毅)3,2, Tiantian Zhang(张田田)3,2, He Huang(黄荷)1,4, Chen Fang(方辰)2,3, Zhong Jin(金钟)1,4
1 Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Center of Scientific Computing Applications & Research, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Topological materials have novel properties both in their bulk and boundaries, thereby attracting a wide interest in the theoretical and experimental communities. The recent development of the topological quantum chemistry and symmetry-based indicator theory in this field has significantly simplified the procedure for determining the topological properties of nonmagnetic crystalline materials. Accordingly, a large number of new topological materials have been found by scanning large crystal databases. This study provides details on the algorithm used in the Catalogue of Topological Electronic Materials. Moreover, based on the algorithm, we develop an automatic package named SymTopo, which calculates the symmetry representations of any given nonmagnetic crystalline material and predicts its topological properties. This package may facilitate the discovery of more topological materials in the future.

Keywords:  topological insulators      topological semimetals      topological invariants      high-throughput research mode  
Received:  17 May 2019      Revised:  24 June 2019      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  81.05.Zx (New materials: theory, design, and fabrication)  
Fund: 

Project supported by the Information Program of the Chinese Academy of Sciences (Grant No. XXH13506-202).

Corresponding Authors:  He Huang, Zhong Jin     E-mail:  huanghe@sccas.cn;zjin@sccas.cn

Cite this article: 

Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟) SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials 2019 Chin. Phys. B 28 087102

[38] Bradley C J and Cracknell A P 2009 The Mathematical Theory of Symmetry in Solids (Oxford: Oxford University Press)
[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[39] Altmann S L and Herzig P 1994 Point-group theory tables (Oxford: Clarendon Press)
[2] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[3] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[4] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[5] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[6] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[7] Kitaev A Y 2001 Phys. Usp. 44 131
[8] Zhang H, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[9] Hsieh T H, Lin H, Liu J, Duan W, Bansi A and Fu L 2012 Nat. Commun. 3 982
[10] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[11] Huang S M, Xu S Y, Belopolski I, Lee C C and Hasan M Z 2015 Nat. Commun. 6 7373
[12] Wang Z J, Alexandradinata A, Cava R J and Bernevig B A 2016 Nature 532 189
[13] Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z J, Felser C, Aroyo M I and B Andrei Bernevig 2017 Nature 547 298
[14] Po H C, Vishwanath A and Watanabe H 2017 Nat. Commun. 8 50
[15] Song Z D, Zhang T T, Fang Z and Fang C 2018 Nat. Commun. 9 3530
[16] Khalaf E, Po H C, Vishwanath A and Watanabe H 2018 Phys. Rev. X 8 031070
[17] Kruthoff J, De Boer J, Van Wezel J, Kane C L and Slager R J 2017 Phys. Rev. X 7 041069
[18] Song Z D, Zhang T T and Fang C 2018 Phys. Rev. X 8 031069
[19] Zhang T T, Jiang Y, Song Z D, Huang H, He Y Q and Fang Z 2019 Nature 566 475
[20] Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A and Wang Z J 2019 Nature 566 480
[21] Tang F, Po H C, Vishwanath A and Wan X G 2019 Nature 566 486
[22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[23] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[24] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Gonze X Almbladh C O, Cucca A, Caliste D, Freysoldt C, Marques M A L, Olevanoch V, Pouillonai Y and Verstraetej M J 2008 Comput. Mater. Sci. 43 0
[27] Torrent M, Jollet F, Bottin F, Zérah G and Gonze X 2008 Comput. Mater. Sci. 42 337
[28] Gonze X, Jollet F, Araujo F A, Adams D and Zwanziger J W 2016 Comput. Phys. Commun. 205 106
[29] Gonze X, Amadon B, Anglade P M et al 2009 Comput. Phys. Commun. 180 2582
[30] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[31] Aroyo M I, Orobengoa D, de la Flor G, Tasci E S, Perez-Mato J M and Wondratschek H 2014 Acta Cryst. A 70 126
[32] Elcoro L, Bradlyn B and Wang Z J 2017 J. Appl. Crystallogr. 50 1457
[33] Ong S P, et al. 2013 Comput. Mat. Sci. 68 314
[34] Giantomassi M, et al. https://github.com/abinit/abipy
[ 2019]
[35] Hellenbrandt M 2004 Crystallogr. Rev. 10 17
[36] Blaha P, Schwarz K, Madsen G K H, et al. 2001 WIEN2k: An augmented plane wave + local orbitals program for calculating crystal properties
[37] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[38] Bradley C J and Cracknell A P 2009 The Mathematical Theory of Symmetry in Solids (Oxford: Oxford University Press)
[39] Altmann S L and Herzig P 1994 Point-group theory tables (Oxford: Clarendon Press)
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] Two-dimensional topological semimetals
Xiaolong Feng(冯晓龙), Jiaojiao Zhu(朱娇娇), Weikang Wu(吴维康), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(10): 107304.
[3] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[4] Structural, elastic, and electronic properties of topological semimetal WC-type MX family by first-principles calculation
Sami Ullah, Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2019, 28(7): 077105.
[5] Electrical spin polarization through spin-momentum locking in topological-insulator nanostructures
Minhao Zhang(张敏昊), Xuefeng Wang(王学锋), Fengqi Song(宋凤麒), Rong Zhang(张荣). Chin. Phys. B, 2018, 27(9): 097307.
[6] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[7] High-throughput research on superconductivity
Mingyang Qin(秦明阳), Zefeng Lin(林泽丰), Zhongxu Wei(魏忠旭), Beiyi Zhu(朱北沂), Jie Yuan(袁洁), Ichiro Takeuchi, Kui Jin(金魁). Chin. Phys. B, 2018, 27(12): 127402.
[8] Synthesis and magnetotransport properties of Bi2Se3 nanowires
Kang Zhang(张亢), Haiyang Pan(潘海洋), Zhongxia Wei(魏仲夏), Minhao Zhang(张敏昊), Fengqi Song(宋风麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(9): 096101.
[9] Two-dimensional materials for ultrafast lasers
Fengqiu Wang(王枫秋). Chin. Phys. B, 2017, 26(3): 034202.
[10] Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3
Minhao Zhang(张敏昊), Yan Li(李焱), Fengqi Song(宋凤麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(12): 127305.
[11] Two-dimensional topological insulators with large bulk energy gap
Z Q Yang(杨中强), Jin-Feng Jia(贾金锋), Dong Qian(钱冬). Chin. Phys. B, 2016, 25(11): 117312.
[12] Topological nodal line semimetals
Chen Fang(方辰), Hongming Weng(翁红明), Xi Dai(戴希), Zhong Fang(方忠). Chin. Phys. B, 2016, 25(11): 117106.
[13] Topological properties of one-dimensional hardcore Bose-Fermi mixture
Jia Yong-Fei (贾永飞), Guo Huai-Ming (郭怀明), Qin Ji-Hong (秦吉红), Chen Zi-Yu (陈子瑜), Feng Shi-Ping (冯世平). Chin. Phys. B, 2013, 22(9): 090308.
[14] Topological insulator nanostructures and devices
Xiu Fa-Xian (修发贤), Zhao Tong-Tong (赵彤彤). Chin. Phys. B, 2013, 22(9): 096104.
[15] Topological edge states and electronic structures of a 2D topological insulator: Single-bilayer Bi (111)
Gao Chun-Lei (高春雷), Qian Dong (钱冬), Liu Can-Hua (刘灿华), Jia Jin-Feng (贾金锋), Liu Feng (刘锋). Chin. Phys. B, 2013, 22(6): 067304.
No Suggested Reading articles found!