Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(9): 090308    DOI: 10.1088/1674-1056/22/9/090308
GENERAL Prev   Next  

Topological properties of one-dimensional hardcore Bose-Fermi mixture

Jia Yong-Fei (贾永飞)a, Guo Huai-Ming (郭怀明)a, Qin Ji-Hong (秦吉红)b, Chen Zi-Yu (陈子瑜)a, Feng Shi-Ping (冯世平)c
a Department of Physics, Beihang University, Beijing 100191, China;
b Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
c Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  We study the topological properties of a one-dimensional (1D) hardcore Bose-Fermi mixture using the exact diagonalization method. We firstly add a hardcore boson to a fermionic system and by examining the edge states we find that the quasi-particle manifests the topological properties of the system. Then we study a mixture with 7 fermions and 1 boson. We find that the mixture also exhibits topological properties and its behaviors are similar to that of the corresponding fermionic system. We present a qualitative explanation to understand such behaviors using the mapping between a hardcore boson and a spinless fermion. These results show the existence of topological properties in a 1D hardcore Bose-Fermi mixture and may be realized using cold atoms trapped in optical lattices experimentally.
Keywords:  Bose-Fermi mixture      topological insulators  
Received:  07 April 2013      Revised:  02 May 2013      Accepted manuscript online: 
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274032, 11104189, 11004006, 11274033, 11074023, and 11274044) and FOK YING TUNG Education Foundation, China.
Corresponding Authors:  Guo Huai-Ming     E-mail:  hmguo@buaa.edu.cn

Cite this article: 

Jia Yong-Fei (贾永飞), Guo Huai-Ming (郭怀明), Qin Ji-Hong (秦吉红), Chen Zi-Yu (陈子瑜), Feng Shi-Ping (冯世平) Topological properties of one-dimensional hardcore Bose-Fermi mixture 2013 Chin. Phys. B 22 090308

[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[3] Moore J E 2010 Nature 464 194
[4] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[5] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[6] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[7] Seradjeh B, Moore J E and Franz M 2009 Phys. Rev. Lett. 103 066402
[8] Wang Z M 2011 Acta Phys. Sin. 60 094205 (in Chinese)
[9] Ren Ji Rong, Zhu T and Duan Y S 2008 Chin. Phys. Lett. 25 367
[10] Li K, Sayipjamal D and Wang J H 2008 Chin. Phys. B 17 1716
[11] Varney C N, Sun K, Rigol M and Galitski V 2010 Phys. Rev. B 82 115125
[12] Hohenadler M, Lang T C and Assaad F F 2011 Phys. Rev. Lett. 106 100403
[13] Yu S L, Xie X C and Li J X 2011 Phys. Rev. Lett. 107 010401
[14] Zheng D, Zhang G M and Wu C J 2011 Phys. Rev. B 84 205121
[15] Yamaji Y and Imada M 2011 Phys. Rev. B 83 205122
[16] Liu J B, Li J H, Song P J and Li W B 2008 Chin. Phys. B 17 38
[17] Wang Z, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 105 256803
[18] Wang Z, Qi X L and Zhang S C 2012 Phys. Rev. B 85 165126
[19] Wang Z and Zhang S C 2012 Phys. Rev. X 2 031008
[20] Gurarie V 2011 Phys. Rev. B 83 085426
[21] Fidkowski L and Kitaev A 2010 Phys. Rev. B 81 134509
[22] Tang E and Wen X G 2012 Phys. Rev. Lett. 109 096403
[23] Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802
[24] Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett. 106 236804
[25] Sun K, Gu Z, Katsura H and Das Sarma S 2011 Phys. Rev. Lett. 106 236803
[26] Wang F and Ran Y 2011 Phys. Rev. B 84 241103
[27] Hu X, Kargarian M and Fiete G A 2011 Phys. Rev. B 84 155116
[28] Neupert T, Santos L, Ryu S, Chamon C and Mudry C 2011 Phys. Rev. B 84 165107
[29] Weeks C and Franz M 2012 Phys. Rev. B 85 041104
[30] Sheng D N, Gu Z C, Sun K and Sheng L 2011 Nature Commun. 2 389
[31] Regnault N and Bernevig B A 2011 Phys. Rev. X 1 021014
[32] Wu Y L, Bernevig B A and Regnault N 2012 Phys. Rev. B 85 075116
[33] Wang Y F, Gu Z C, Gong C D and Sheng D N 2011 Phys. Rev. Lett. 107 146803
[34] Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
[35] Goldman N, Urban D F and Bercioux D 2011 Phys. Rev. A 83 063601
[36] Stanescu T D, Galitski V and Das Sarma S 2010 Phys. Rev. A 82 013608
[37] Goldman N, Satija I, Nikolic P, Bermudez A, Martin-Delgado M A, Lewenstein M and Spielman I B 2010 Phys. Rev. Lett. 105 255302
[38] Liu X J, Liu X, Wu C and Sinova J 2010 Phys. Rev. A 81 033622
[39] Günter K, Stöferle T, Moritz H, Köhl M and Esslinger T 2006 Phys. Rev. Lett. 96 180402
[40] Ospelkaus S, Ospelkaus C, Humbert L, Sengstock K and Bongs K 2006 Phys. Rev. Lett. 97 120403
[41] Guo H M, Shen S Q and Feng S P 2012 Phys. Rev. B 86 085124
[42] Guo H M and Shen S Q 2011 Phys. Rev. B 84 195107
[43] Resta R 1994 Rev. Mod. Phys. 66 899
[44] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[45] Niu Q, Thouless D J and Wu Y S 1985 Phys. Rev. B 31 3372
[46] Alavi S A 2003 Chin. Phys. Lett. 20 605
[47] Yan X B 2007 Chin. Phys. Lett. 24 2170
[48] Matsubara T and Matsuda H 1956 Prog. Theor. Phys. 16 569
[49] Jordan P and Wigner E 1928 Z. Phys. 47 631
[1] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[2] Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K
Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖). Chin. Phys. B, 2023, 32(2): 023701.
[3] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[4] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[5] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[6] Electrical spin polarization through spin-momentum locking in topological-insulator nanostructures
Minhao Zhang(张敏昊), Xuefeng Wang(王学锋), Fengqi Song(宋凤麒), Rong Zhang(张荣). Chin. Phys. B, 2018, 27(9): 097307.
[7] Synthesis and magnetotransport properties of Bi2Se3 nanowires
Kang Zhang(张亢), Haiyang Pan(潘海洋), Zhongxia Wei(魏仲夏), Minhao Zhang(张敏昊), Fengqi Song(宋风麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(9): 096101.
[8] Two-dimensional materials for ultrafast lasers
Fengqiu Wang(王枫秋). Chin. Phys. B, 2017, 26(3): 034202.
[9] Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3
Minhao Zhang(张敏昊), Yan Li(李焱), Fengqi Song(宋凤麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(12): 127305.
[10] Two-dimensional topological insulators with large bulk energy gap
Z Q Yang(杨中强), Jin-Feng Jia(贾金锋), Dong Qian(钱冬). Chin. Phys. B, 2016, 25(11): 117312.
[11] Topological insulator nanostructures and devices
Xiu Fa-Xian (修发贤), Zhao Tong-Tong (赵彤彤). Chin. Phys. B, 2013, 22(9): 096104.
[12] Topological edge states and electronic structures of a 2D topological insulator: Single-bilayer Bi (111)
Gao Chun-Lei (高春雷), Qian Dong (钱冬), Liu Can-Hua (刘灿华), Jia Jin-Feng (贾金锋), Liu Feng (刘锋). Chin. Phys. B, 2013, 22(6): 067304.
[13] Spontaneous symmetry breaking of a Bose–Fermi mixture in a two-dimensional double-well potential
Wang Yuan-Sheng(王元生), Yan Pei-Gen(颜培根), Li Bin(李彬), and Liu Xue-Shen(刘学深) . Chin. Phys. B, 2012, 21(1): 010309.
No Suggested Reading articles found!