|
|
Topological properties of one-dimensional hardcore Bose-Fermi mixture |
Jia Yong-Fei (贾永飞)a, Guo Huai-Ming (郭怀明)a, Qin Ji-Hong (秦吉红)b, Chen Zi-Yu (陈子瑜)a, Feng Shi-Ping (冯世平)c |
a Department of Physics, Beihang University, Beijing 100191, China;
b Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
c Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract We study the topological properties of a one-dimensional (1D) hardcore Bose-Fermi mixture using the exact diagonalization method. We firstly add a hardcore boson to a fermionic system and by examining the edge states we find that the quasi-particle manifests the topological properties of the system. Then we study a mixture with 7 fermions and 1 boson. We find that the mixture also exhibits topological properties and its behaviors are similar to that of the corresponding fermionic system. We present a qualitative explanation to understand such behaviors using the mapping between a hardcore boson and a spinless fermion. These results show the existence of topological properties in a 1D hardcore Bose-Fermi mixture and may be realized using cold atoms trapped in optical lattices experimentally.
|
Received: 07 April 2013
Revised: 02 May 2013
Accepted manuscript online:
|
PACS:
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274032, 11104189, 11004006, 11274033, 11074023, and 11274044) and FOK YING TUNG Education Foundation, China. |
Corresponding Authors:
Guo Huai-Ming
E-mail: hmguo@buaa.edu.cn
|
Cite this article:
Jia Yong-Fei (贾永飞), Guo Huai-Ming (郭怀明), Qin Ji-Hong (秦吉红), Chen Zi-Yu (陈子瑜), Feng Shi-Ping (冯世平) Topological properties of one-dimensional hardcore Bose-Fermi mixture 2013 Chin. Phys. B 22 090308
|
[1] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[2] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[3] |
Moore J E 2010 Nature 464 194
|
[4] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[5] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[6] |
Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
|
[7] |
Seradjeh B, Moore J E and Franz M 2009 Phys. Rev. Lett. 103 066402
|
[8] |
Wang Z M 2011 Acta Phys. Sin. 60 094205 (in Chinese)
|
[9] |
Ren Ji Rong, Zhu T and Duan Y S 2008 Chin. Phys. Lett. 25 367
|
[10] |
Li K, Sayipjamal D and Wang J H 2008 Chin. Phys. B 17 1716
|
[11] |
Varney C N, Sun K, Rigol M and Galitski V 2010 Phys. Rev. B 82 115125
|
[12] |
Hohenadler M, Lang T C and Assaad F F 2011 Phys. Rev. Lett. 106 100403
|
[13] |
Yu S L, Xie X C and Li J X 2011 Phys. Rev. Lett. 107 010401
|
[14] |
Zheng D, Zhang G M and Wu C J 2011 Phys. Rev. B 84 205121
|
[15] |
Yamaji Y and Imada M 2011 Phys. Rev. B 83 205122
|
[16] |
Liu J B, Li J H, Song P J and Li W B 2008 Chin. Phys. B 17 38
|
[17] |
Wang Z, Qi X L and Zhang S C 2010 Phys. Rev. Lett. 105 256803
|
[18] |
Wang Z, Qi X L and Zhang S C 2012 Phys. Rev. B 85 165126
|
[19] |
Wang Z and Zhang S C 2012 Phys. Rev. X 2 031008
|
[20] |
Gurarie V 2011 Phys. Rev. B 83 085426
|
[21] |
Fidkowski L and Kitaev A 2010 Phys. Rev. B 81 134509
|
[22] |
Tang E and Wen X G 2012 Phys. Rev. Lett. 109 096403
|
[23] |
Tang E, Mei J W and Wen X G 2011 Phys. Rev. Lett. 106 236802
|
[24] |
Neupert T, Santos L, Chamon C and Mudry C 2011 Phys. Rev. Lett. 106 236804
|
[25] |
Sun K, Gu Z, Katsura H and Das Sarma S 2011 Phys. Rev. Lett. 106 236803
|
[26] |
Wang F and Ran Y 2011 Phys. Rev. B 84 241103
|
[27] |
Hu X, Kargarian M and Fiete G A 2011 Phys. Rev. B 84 155116
|
[28] |
Neupert T, Santos L, Ryu S, Chamon C and Mudry C 2011 Phys. Rev. B 84 165107
|
[29] |
Weeks C and Franz M 2012 Phys. Rev. B 85 041104
|
[30] |
Sheng D N, Gu Z C, Sun K and Sheng L 2011 Nature Commun. 2 389
|
[31] |
Regnault N and Bernevig B A 2011 Phys. Rev. X 1 021014
|
[32] |
Wu Y L, Bernevig B A and Regnault N 2012 Phys. Rev. B 85 075116
|
[33] |
Wang Y F, Gu Z C, Gong C D and Sheng D N 2011 Phys. Rev. Lett. 107 146803
|
[34] |
Bloch I, Dalibard J and Zwerger W 2008 Rev. Mod. Phys. 80 885
|
[35] |
Goldman N, Urban D F and Bercioux D 2011 Phys. Rev. A 83 063601
|
[36] |
Stanescu T D, Galitski V and Das Sarma S 2010 Phys. Rev. A 82 013608
|
[37] |
Goldman N, Satija I, Nikolic P, Bermudez A, Martin-Delgado M A, Lewenstein M and Spielman I B 2010 Phys. Rev. Lett. 105 255302
|
[38] |
Liu X J, Liu X, Wu C and Sinova J 2010 Phys. Rev. A 81 033622
|
[39] |
Günter K, Stöferle T, Moritz H, Köhl M and Esslinger T 2006 Phys. Rev. Lett. 96 180402
|
[40] |
Ospelkaus S, Ospelkaus C, Humbert L, Sengstock K and Bongs K 2006 Phys. Rev. Lett. 97 120403
|
[41] |
Guo H M, Shen S Q and Feng S P 2012 Phys. Rev. B 86 085124
|
[42] |
Guo H M and Shen S Q 2011 Phys. Rev. B 84 195107
|
[43] |
Resta R 1994 Rev. Mod. Phys. 66 899
|
[44] |
Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
|
[45] |
Niu Q, Thouless D J and Wu Y S 1985 Phys. Rev. B 31 3372
|
[46] |
Alavi S A 2003 Chin. Phys. Lett. 20 605
|
[47] |
Yan X B 2007 Chin. Phys. Lett. 24 2170
|
[48] |
Matsubara T and Matsuda H 1956 Prog. Theor. Phys. 16 569
|
[49] |
Jordan P and Wigner E 1928 Z. Phys. 47 631
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|