Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087303    DOI: 10.1088/1674-1056/add5cd
RAPID COMMUNICATION Prev   Next  

Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals

Yaofeng Xie(谢耀锋)1,2,†, Senhao Lv(吕森浩)1,†, Qi Qi(齐琦)1,2, Guojing Hu(胡国静)1, Ke Zhu(祝轲)1,2, Zhen Zhao(赵振)1, Guoyu Xian(冼国裕)3, Yechao Han(韩烨超)2, Ruwen Wang(王汝文)1,2, Chenyu Bai(白晨宇)1,2, Lihong Bao(鲍丽宏)1,2, Xiao Lin(林晓)2, Hui Guo(郭辉)1,2,‡, Haitao Yang(杨海涛)1,2,§, and Hong-Jun Gao(高鸿钧)1,2
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Vanadium-based transition metal chalcogenides V$_{{m}}{X}_{{n}}$ ($X ={\rm S}$, Se, Te) with their distinctive quantum effects, tunable magnetism, spin-orbit coupling, and high carrier mobility are a valuable platform to explore the interplay between magnetism and electronic correlations, especially with tunable structural phases and magnetic properties through stoichiometric variations, making them ideal candidates for advanced device applications. Here, we report the synthesis of high-quality V$_{{5+x}}$S$_{8}$ single crystals with different concentrations of self-intercalated vanadium. V$_{{5+x}}$S$_{{8}}$ crystals show an antiferromagnetic behavior and a spin-flop-like transition below $T_{\rm N}$ of 30.6 K. The high-quality V$_{{5+x}}$S$_{{8}}$ single crystals exhibit a large negative magnetoresistance of 12.3% at 2 K. Interestingly, V$_{{5+x}}$S$_{{8}}$ crystals show an obvious low-temperature resistance upturn that gradually levels off with the increasing magnetic field, attributed to the Kondo effect arising from the interaction between conduction electrons and embedded vanadium magnetic impurities. With increasing V doping, the antiferromagnetic interactions intensify, weakening the coupling between the local moments and conduction electrons, which in turn lowers the Kondo temperature ($T_{\rm K}$). Furthermore, the anomalous Hall effect is observed in V$_{{5.73}}$S$_{{8}}$, with an anomalous Hall conductivity (AHC) of 50.46 $\Omega^{{-1}}\cdot$cm$^-1$ and anomalous Hall angle of 0.73% at 2 K. Our findings offer valuable insights into the mechanisms of the Kondo effect and anomalous Hall effect in self-intercalated transition metal chalcogenides with complex magnetism and electronic correlation effects.
Keywords:  V$_{5+x}$S$_{8}$ crystals      antiferromagnetic      negative magnetoresistance      Kondo effect      anomalous Hall effect  
Received:  24 March 2025      Revised:  20 April 2025      Accepted manuscript online:  08 May 2025
PACS:  73.43.Qt (Magnetoresistance)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1204100), the National Natural Science Foundation of China (Grant Nos. 62488201 and 1240041502), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), the Chinese Academy of Sciences (Grant No. XDB33030100), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700).
Corresponding Authors:  Hui Guo, Haitao Yang     E-mail:  guohui@iphy.ac.cn;htyang@iphy.ac.cn

Cite this article: 

Yaofeng Xie(谢耀锋), Senhao Lv(吕森浩), Qi Qi(齐琦), Guojing Hu(胡国静), Ke Zhu(祝轲), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Ruwen Wang(王汝文), Chenyu Bai(白晨宇), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals 2025 Chin. Phys. B 34 087303

[1] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94
[2] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[3] la Barrera S C, SinkoMR, Gopalan D P, Sivadas N, Seyler K L,Watanabe K, Taniguchi T, Tsen A W, Xu X D, Xiao D and Hunt B M 2018 Nat. Commun. 9 1427
[4] Sun Z P, Martinez A and Wang F 2016 Nat. Photonics 10 227
[5] Ng H K, Xiang D, Suwardi A, Hu G W, Yang K, Zhao Y S, Liu T, Cao Z H, Liu H J, Li S S, Cao J, Zhu Q, Dong Z G, Tan C K I, Chi D Z, Qiu C W, Hippalgaonkar K, Eda G, Yang M and Wu J 2022 Nat. Electron. 5 489
[6] Novoselov K S, Mishchenko A, Carvalho A and Neto A H C2016 Science 353 aac9439
[7] Yi H M, Hu L H, Wang Y X, Xiao R, Cai J Q, Hickey D R, Dong C Y, Zhao Y F, Zhou L J and Zhang R X 2022 Nat. Mater. 21 1366
[8] Li Y J, Yin R T, Li M Z, Gong J S, Chen Z Y, Zhang J K, Yan Y J and Feng D L 2024 Nat. Commun. 15 10121
[9] Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E and Morpurgo A F 2019 Nat. Nanotechnol. 14 1116
[10] Ghazaryan D, Greenaway M T, Wang Z, Guarochico-Moreira V H, Vera-Marun I J, Yin J, Liao Y, Morozov S V, Kristanovski O, Lichtenstein A I, Katsnelson M I, Withers F, Mishchenko A, Eaves L, Geim A K, Novoselov K S and Misra A 2018 Nat. Electron. 1 344
[11] Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W and Chang H 2022 Nat. Commun. 13 5067
[12] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433
[13] Tian Y, Gao W, Henriksen E A, Chelikowsky J R and Yang L 2019 Nano Lett. 19 7673
[14] Cao T F, Shao D F, Huang K, Gurung G and Tsymbal E Y 2023 Nano Lett. 23 3781
[15] Huang M, Zhang Y, Lei X Y, Hu G J, Xiang J X, Zeng H L, Fu X W, Zhang Z M and Chai G Z 2021 Nano Lett. 21 4280
[16] Hu G J, Guo H, Lv S H, Li L X, Wang Y H, Han Y C, Pan L L, Xie Y L, Yu W Q, Zhu K, Qi Q, Xian, G Y, Zhu S Y, Shi J A, Bao L H, Lin X, Zhou W, Yang H T and Gao H J 2024 Adv. Mater. 36 2403154
[17] Wang Y, Sofer Z, Luxa J and Pumera M M 2016 Adv. Mater. Interfaces 3 1600433
[18] Sugawara K, Nakata Y, Fujii K, Nakayama K, Souma S, Takahashi T and Sato T 2019 Phys. Rev. B 99 241404
[19] Hardy W J, Yuan J T, Guo H, Zhou P P, Lou J and Natelson D 2016 ACS Nano 10 5941
[20] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Manh-Huong P and Batzill M 2018 Nat. Nanotechnol. 13 289
[21] Liu H T, Xue Y Z, Sho J A, Guzman R A, Zhan P P, Zhou Z, He Y G, Bian C, Wu L M, Ma R S, Chen J C, Yan J H, Yang H T, Shen C M, Zhou W, Bao L H and Gao H J 2019 Nano Lett. 19 8572
[22] Guo Y Q, Deng H T, Sun X, Li X L, Zhao J Y,Wu J C, ChuWS, Zhang S J, Pan H B, Zheng X S, Wu X J, Jin C Q, Wu C Z and Xie Y 2017 Adv. Mater. 29 1700715
[23] Niu J J, Yan B M, Ji Q Q, Liu Z F, Li M Q, Gao P, Zhang Y F, Yu D P and Wu X S 2017 Phys. Rev. B 96 075402
[24] Zhou Z, Zhao X X, Wu L M, Liu H T, Chen J C, Xi C Y, Wang Z S, Liu E K, Zhou W, Pennycook S J, Pantelides S T, Zhang X G, Bao L H and Gao H J 2022 Phys. Rev. B 105 235433
[25] Wu X K, Wang B, Wu D T, Chen B W, Mi M J, Wang Y L and Shen B 2024 Chin. Phys. B 33 027503
[26] Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W and Seongshik O 2011 Phys. Rev. B 2 073109
[27] Lupke F, Pham A D, Zhao Y F, Zhou L J, Lu W C, Briggs E, Bernholc J, Kolmer M, Teeter J, Kolmer M, Teeter J, Ko W, Chang C Z, Ganesh P and Li A P 2022 Phys. Rev. B 105 035423
[28] Wu X K, Wang B, Wu D T, Chen B W, Mi M J, Wang Y L and Shen B 2017 Chin. Phys. B 33 027503
[29] Niu J J and Yan B M 2017 Phys. Rev. B 96 075402
[30] Kar I, Routh S, Ghorai S, Purwar S and Thirupathaiah S 2023 Solid State Commun. 369 115209
[31] Nakanishi M, Yoshimura K, Kosuge K, Goto T, Fujii T and Takada J 2000 J. Magn. Magn. Mater. 221 301
[32] Dhara S, Chowdhury R R and Bandyopadhyay B 2016 Phys. Rev. B 93 214413
[33] Singh M, Ghosh L, Gangwar V K, Kumar Y, Pal D, Shahi P, Kumar S, Mukherjee S, Shimada K and Chatterjee S 2022 Appl. Phys. Lett. 121 032403
[34] Ghosh S, Tanguturi R G, Pramanik P, Joshi D C, Mishra P K, Das S and Thota S 2019 Phys. Rev. B 99 115135
[35] Ghosh T, Fukuda T, Kakeshita T, Kaul S N and Mukhopadhyay P K 2017 Phys. Rev. B 95 140401
[36] Wang J S, PowersW, Zhang Z, Smith M, McIntosh B J, Bac S K, Riney L, Zhukovskyi M, Orlova, T, Rokhinson L P, Hsu Y T, Liu X Y and Assaf B A 2022 Nano Lett. 22 792
[37] Roulleau P, Choi T, Riedi S, Heinzel T, Shorubalko I, Ihn T and Ensslin K 2010 Phys. Rev. B 81 155449
[38] Sasmal S, Mondal R, Kulkarni R, Thamizhavel A and Singh B 2020 J. Phys.: Condens. Matter 32 335701
[39] Laha A, Singha R, Mardanya S, Singh B, Agarwal A, Mandal P and Hossain Z 2021 Phys. Rev. B 103 l241112
[40] Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493
[41] Felsch W and Winzer K 1973 Solid State Commun. 13 569
[42] Zhang Y H, Kahle S, Herden T, Stroh C, Mayor M, Schlickum U, Ternes M, Wahl P and Kern K 2022 Nat. Commun. 13 5067
[43] Anderson P W 1970 J. Phys. C 3 2436
[44] Gentile P, de Leo L, Fabrizio M and Tosatti E 2009 Europhys. Lett. 87 27014
[45] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[46] Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125
[47] Tanaka M, Fujishiro Y, Mogi M, Kaneko Y, Yokosawa T, Kanazawa N, Minami S, Koretsune T, Arita R, Tarucha S, Yamamoto M and Tokura Y 2021 Nano Lett. 20 7476
[1] Ab initio prediction of ground-state magnetic ordering and high-pressure magnetic phase transition of uranium mononitride
Jing-Jing Zheng(郑晶晶), Yuxi Chen(陈禹西), Chengxiang Zhao(赵承祥), Junfeng Zhang(张均锋), Ping Zhang(张平), Bao-Tian Wang(王保田), and Jiang-Jiang Ma(马江将). Chin. Phys. B, 2025, 34(8): 087101.
[2] In-plane negative magnetoresistance and quantum oscillations in van der Waals antiferromagnet DyTe3
Qi Qi(齐琦), Senhao Lv(吕森浩), Ke Zhu(祝轲), Yaofeng Xie(谢耀锋), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Yang Yang(杨洋), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077305.
[3] Current density in anomalous Hall effect regime under weak scattering
Ning Dai(戴凝) and Bin Zhou(周斌). Chin. Phys. B, 2025, 34(7): 077301.
[4] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[5] Orbital magnetic field effect on spin waves in a triangular lattice tetrahedral antiferromagnetic insulator
Pi-Ye Zhou(周丕烨), Xiao-Hui Li(李晓慧), and Yuan Wan(万源). Chin. Phys. B, 2025, 34(6): 067501.
[6] Interacting Dirac semi-metal state in nonsymmorphic Kondo-lattice compound CeAgSb2
Da-Liang Guo(郭达良), and Huan Li(黎欢). Chin. Phys. B, 2025, 34(6): 067102.
[7] Crystal structure, magnetic properties, and tunable Kondo effect in a new compound Nd5ScSb12
Yi-Ran Li(李祎冉), Na Li(李娜), Ping Su(苏平), Hui Liang(梁慧), Kai-Yuan Hu(胡开源), Ying Zhou(周颖), Dan-Dan Wu(吴丹丹), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), Xia Zhao(赵霞), Xue-Feng Sun(孙学峰), and Yi-Yan Wang(王义炎). Chin. Phys. B, 2025, 34(6): 067502.
[8] Quantum anomalous Hall effect in twisted bilayer graphene
Wen-Xiao Wang(王文晓), Yi-Wen Liu(刘亦文), and Lin He(何林). Chin. Phys. B, 2025, 34(4): 047301.
[9] Anomalous Hall effect in Bernal tetralayer graphene enhanced by spin-orbit interaction
Zhuangzhuang Qu(曲壮壮), Zhihao Chen(陈志豪), Xiangyan Han(韩香岩), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Wenjun Zhao(赵文俊), Kenji Watanabe, Takashi Taniguchi, Zhi-Gang Cheng(程智刚), Zizhao Gan(甘子钊), and Jianming Lu(路建明). Chin. Phys. B, 2025, 34(3): 037201.
[10] In-phase and out-of-phase spin pumping effects in Py/Ru/Py synthetic antiferromagnetic structures
Zhaocong Huang(黄兆聪), Xuejian Tang(唐学健), Qian Chen(陈倩), Wei Jiang(蒋伟), Qingjie Guo(郭庆杰), Milad Jalali, Jun Du(杜军), and Ya Zhai(翟亚). Chin. Phys. B, 2024, 33(9): 097202.
[11] Evolution of anomalous Hall effect in ferromagnetic Weyl semimetal NbxZr1-xCo2Sn
Bo-Wen Chen(陈博文) and Bing Shen(沈冰). Chin. Phys. B, 2024, 33(8): 087501.
[12] Tailoring-compensated ferrimagnetic state and anomalous Hall effect in quaternary Mn-Ru-V-Ga Heusler compounds
Jin-Jing Liang(梁瑾静), Xue-Kui Xi(郗学奎), Wen-Hong Wang(王文洪), and Yong-Chang Lau(刘永昌). Chin. Phys. B, 2024, 33(7): 077504.
[13] Intrinsic valley-polarized quantum anomalous Hall effect in a two-dimensional germanene/MnI2 van der Waals heterostructure
Xiao-Jing Dong(董晓晶) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(7): 077303.
[14] Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
Li-Bo Zhang(张黎博), Qing-Xin Dong(董庆新), Jian-Li Bai(白建利), Qiao-Yu Liu(刘乔宇), Jing-Wen Cheng(程靖雯), Cun-Dong Li(李存东), Pin-Yu Liu(刘品宇), Ying-Rui Sun(孙英睿), Yu Huang(黄宇), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富). Chin. Phys. B, 2024, 33(6): 067101.
[15] Enhanced anomalous Hall effect in kagome magnet YbMn6Sn6 with intermediate-valence ytterbium
Longfei Li(李龙飞), Shengwei Chi(迟晟玮), Wenlong Ma(马文龙), Kaizhen Guo(郭凯臻), Gang Xu(徐刚), and Shuang Jia(贾爽). Chin. Phys. B, 2024, 33(5): 057501.
No Suggested Reading articles found!