|
|
|
Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals |
| Yaofeng Xie(谢耀锋)1,2,†, Senhao Lv(吕森浩)1,†, Qi Qi(齐琦)1,2, Guojing Hu(胡国静)1, Ke Zhu(祝轲)1,2, Zhen Zhao(赵振)1, Guoyu Xian(冼国裕)3, Yechao Han(韩烨超)2, Ruwen Wang(王汝文)1,2, Chenyu Bai(白晨宇)1,2, Lihong Bao(鲍丽宏)1,2, Xiao Lin(林晓)2, Hui Guo(郭辉)1,2,‡, Haitao Yang(杨海涛)1,2,§, and Hong-Jun Gao(高鸿钧)1,2 |
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
|
|
Abstract Vanadium-based transition metal chalcogenides V$_{{m}}{X}_{{n}}$ ($X ={\rm S}$, Se, Te) with their distinctive quantum effects, tunable magnetism, spin-orbit coupling, and high carrier mobility are a valuable platform to explore the interplay between magnetism and electronic correlations, especially with tunable structural phases and magnetic properties through stoichiometric variations, making them ideal candidates for advanced device applications. Here, we report the synthesis of high-quality V$_{{5+x}}$S$_{8}$ single crystals with different concentrations of self-intercalated vanadium. V$_{{5+x}}$S$_{{8}}$ crystals show an antiferromagnetic behavior and a spin-flop-like transition below $T_{\rm N}$ of 30.6 K. The high-quality V$_{{5+x}}$S$_{{8}}$ single crystals exhibit a large negative magnetoresistance of 12.3% at 2 K. Interestingly, V$_{{5+x}}$S$_{{8}}$ crystals show an obvious low-temperature resistance upturn that gradually levels off with the increasing magnetic field, attributed to the Kondo effect arising from the interaction between conduction electrons and embedded vanadium magnetic impurities. With increasing V doping, the antiferromagnetic interactions intensify, weakening the coupling between the local moments and conduction electrons, which in turn lowers the Kondo temperature ($T_{\rm K}$). Furthermore, the anomalous Hall effect is observed in V$_{{5.73}}$S$_{{8}}$, with an anomalous Hall conductivity (AHC) of 50.46 $\Omega^{{-1}}\cdot$cm$^-1$ and anomalous Hall angle of 0.73% at 2 K. Our findings offer valuable insights into the mechanisms of the Kondo effect and anomalous Hall effect in self-intercalated transition metal chalcogenides with complex magnetism and electronic correlation effects.
|
Received: 24 March 2025
Revised: 20 April 2025
Accepted manuscript online: 08 May 2025
|
|
PACS:
|
73.43.Qt
|
(Magnetoresistance)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant No. 2022YFA1204100), the National Natural Science Foundation of China (Grant Nos. 62488201 and 1240041502), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-003), the Chinese Academy of Sciences (Grant No. XDB33030100), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700). |
Corresponding Authors:
Hui Guo, Haitao Yang
E-mail: guohui@iphy.ac.cn;htyang@iphy.ac.cn
|
Cite this article:
Yaofeng Xie(谢耀锋), Senhao Lv(吕森浩), Qi Qi(齐琦), Guojing Hu(胡国静), Ke Zhu(祝轲), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Ruwen Wang(王汝文), Chenyu Bai(白晨宇), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals 2025 Chin. Phys. B 34 087303
|
[1] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 [2] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 [3] la Barrera S C, SinkoMR, Gopalan D P, Sivadas N, Seyler K L,Watanabe K, Taniguchi T, Tsen A W, Xu X D, Xiao D and Hunt B M 2018 Nat. Commun. 9 1427 [4] Sun Z P, Martinez A and Wang F 2016 Nat. Photonics 10 227 [5] Ng H K, Xiang D, Suwardi A, Hu G W, Yang K, Zhao Y S, Liu T, Cao Z H, Liu H J, Li S S, Cao J, Zhu Q, Dong Z G, Tan C K I, Chi D Z, Qiu C W, Hippalgaonkar K, Eda G, Yang M and Wu J 2022 Nat. Electron. 5 489 [6] Novoselov K S, Mishchenko A, Carvalho A and Neto A H C2016 Science 353 aac9439 [7] Yi H M, Hu L H, Wang Y X, Xiao R, Cai J Q, Hickey D R, Dong C Y, Zhao Y F, Zhou L J and Zhang R X 2022 Nat. Mater. 21 1366 [8] Li Y J, Yin R T, Li M Z, Gong J S, Chen Z Y, Zhang J K, Yan Y J and Feng D L 2024 Nat. Commun. 15 10121 [9] Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E and Morpurgo A F 2019 Nat. Nanotechnol. 14 1116 [10] Ghazaryan D, Greenaway M T, Wang Z, Guarochico-Moreira V H, Vera-Marun I J, Yin J, Liao Y, Morozov S V, Kristanovski O, Lichtenstein A I, Katsnelson M I, Withers F, Mishchenko A, Eaves L, Geim A K, Novoselov K S and Misra A 2018 Nat. Electron. 1 344 [11] Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W and Chang H 2022 Nat. Commun. 13 5067 [12] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433 [13] Tian Y, Gao W, Henriksen E A, Chelikowsky J R and Yang L 2019 Nano Lett. 19 7673 [14] Cao T F, Shao D F, Huang K, Gurung G and Tsymbal E Y 2023 Nano Lett. 23 3781 [15] Huang M, Zhang Y, Lei X Y, Hu G J, Xiang J X, Zeng H L, Fu X W, Zhang Z M and Chai G Z 2021 Nano Lett. 21 4280 [16] Hu G J, Guo H, Lv S H, Li L X, Wang Y H, Han Y C, Pan L L, Xie Y L, Yu W Q, Zhu K, Qi Q, Xian, G Y, Zhu S Y, Shi J A, Bao L H, Lin X, Zhou W, Yang H T and Gao H J 2024 Adv. Mater. 36 2403154 [17] Wang Y, Sofer Z, Luxa J and Pumera M M 2016 Adv. Mater. Interfaces 3 1600433 [18] Sugawara K, Nakata Y, Fujii K, Nakayama K, Souma S, Takahashi T and Sato T 2019 Phys. Rev. B 99 241404 [19] Hardy W J, Yuan J T, Guo H, Zhou P P, Lou J and Natelson D 2016 ACS Nano 10 5941 [20] Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Manh-Huong P and Batzill M 2018 Nat. Nanotechnol. 13 289 [21] Liu H T, Xue Y Z, Sho J A, Guzman R A, Zhan P P, Zhou Z, He Y G, Bian C, Wu L M, Ma R S, Chen J C, Yan J H, Yang H T, Shen C M, Zhou W, Bao L H and Gao H J 2019 Nano Lett. 19 8572 [22] Guo Y Q, Deng H T, Sun X, Li X L, Zhao J Y,Wu J C, ChuWS, Zhang S J, Pan H B, Zheng X S, Wu X J, Jin C Q, Wu C Z and Xie Y 2017 Adv. Mater. 29 1700715 [23] Niu J J, Yan B M, Ji Q Q, Liu Z F, Li M Q, Gao P, Zhang Y F, Yu D P and Wu X S 2017 Phys. Rev. B 96 075402 [24] Zhou Z, Zhao X X, Wu L M, Liu H T, Chen J C, Xi C Y, Wang Z S, Liu E K, Zhou W, Pennycook S J, Pantelides S T, Zhang X G, Bao L H and Gao H J 2022 Phys. Rev. B 105 235433 [25] Wu X K, Wang B, Wu D T, Chen B W, Mi M J, Wang Y L and Shen B 2024 Chin. Phys. B 33 027503 [26] Kim Y S, Brahlek M, Bansal N, Edrey E, Kapilevich G A, Iida K, Tanimura M, Horibe Y, Cheong S W and Seongshik O 2011 Phys. Rev. B 2 073109 [27] Lupke F, Pham A D, Zhao Y F, Zhou L J, Lu W C, Briggs E, Bernholc J, Kolmer M, Teeter J, Kolmer M, Teeter J, Ko W, Chang C Z, Ganesh P and Li A P 2022 Phys. Rev. B 105 035423 [28] Wu X K, Wang B, Wu D T, Chen B W, Mi M J, Wang Y L and Shen B 2017 Chin. Phys. B 33 027503 [29] Niu J J and Yan B M 2017 Phys. Rev. B 96 075402 [30] Kar I, Routh S, Ghorai S, Purwar S and Thirupathaiah S 2023 Solid State Commun. 369 115209 [31] Nakanishi M, Yoshimura K, Kosuge K, Goto T, Fujii T and Takada J 2000 J. Magn. Magn. Mater. 221 301 [32] Dhara S, Chowdhury R R and Bandyopadhyay B 2016 Phys. Rev. B 93 214413 [33] Singh M, Ghosh L, Gangwar V K, Kumar Y, Pal D, Shahi P, Kumar S, Mukherjee S, Shimada K and Chatterjee S 2022 Appl. Phys. Lett. 121 032403 [34] Ghosh S, Tanguturi R G, Pramanik P, Joshi D C, Mishra P K, Das S and Thota S 2019 Phys. Rev. B 99 115135 [35] Ghosh T, Fukuda T, Kakeshita T, Kaul S N and Mukhopadhyay P K 2017 Phys. Rev. B 95 140401 [36] Wang J S, PowersW, Zhang Z, Smith M, McIntosh B J, Bac S K, Riney L, Zhukovskyi M, Orlova, T, Rokhinson L P, Hsu Y T, Liu X Y and Assaf B A 2022 Nano Lett. 22 792 [37] Roulleau P, Choi T, Riedi S, Heinzel T, Shorubalko I, Ihn T and Ensslin K 2010 Phys. Rev. B 81 155449 [38] Sasmal S, Mondal R, Kulkarni R, Thamizhavel A and Singh B 2020 J. Phys.: Condens. Matter 32 335701 [39] Laha A, Singha R, Mardanya S, Singh B, Agarwal A, Mandal P and Hossain Z 2021 Phys. Rev. B 103 l241112 [40] Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493 [41] Felsch W and Winzer K 1973 Solid State Commun. 13 569 [42] Zhang Y H, Kahle S, Herden T, Stroh C, Mayor M, Schlickum U, Ternes M, Wahl P and Kern K 2022 Nat. Commun. 13 5067 [43] Anderson P W 1970 J. Phys. C 3 2436 [44] Gentile P, de Leo L, Fabrizio M and Tosatti E 2009 Europhys. Lett. 87 27014 [45] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [46] Liu E K, Sun Y, Kumar N, Muechler L, Sun A L, Jiao L, Yang S Y, Liu D F, Liang A J, Xu Q N, Kroder J, Süss V, Borrmann H, Shekhar C, Wang Z S, Xi C Y, Wang W H, Schnelle W, Wirth S, Chen Y L, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [47] Tanaka M, Fujishiro Y, Mogi M, Kaneko Y, Yokosawa T, Kanazawa N, Minami S, Koretsune T, Arita R, Tarucha S, Yamamoto M and Tokura Y 2021 Nano Lett. 20 7476 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|