|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
Magnetotransport properties of two-dimensional tellurium at high pressure |
| Huiyuan Guo(郭慧圆)1, Jialiang Jiang(姜家梁)1, Boyu Zou(邹博宇)1, Jie Cui(崔杰)1, Qinglin Wang(王庆林)1,†, Haiwa Zhang(张海娃)1, Guangyu Wang(王光宇)1, Guozhao Zhang(张国召)1, Kai Wang(王凯)1, Yinwei Li(李印威)2, and Cailong Liu(刘才龙)1,‡ |
1 School of Physics Science & Information Technology, Key Laboratory of Quantum Materials Under Extreme Conditions in Shandong Province, Liaocheng University, Liaocheng 252059, China; 2 Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China |
|
|
|
|
Abstract Two-dimensional tellurium (2D-Te) exhibits strong spin-orbit coupling and a chiral structure. Studying its magnetotransport properties is crucial for the development of spintronic technologies and the exploration of novel device applications. The magnetotransport properties of 2D-Te under varying temperatures and high pressures warrant further study. In this paper, the magnetotransport behavior of 2D-Te under low-temperature and high-pressure conditions is investigated. At room temperature, the magnetoresistance (${\rm MR}$) increases with increasing magnetic field, exhibiting positive ${\rm MR}$ behavior below 4.3 GPa. During decompression, ${\rm MR}$ is almost constant with decreasing pressure. ${\rm MR}$ is more sensitive to pressure at lower temperatures.
|
Received: 25 February 2025
Revised: 23 April 2025
Accepted manuscript online: 08 May 2025
|
|
PACS:
|
73.43.Qt
|
(Magnetoresistance)
|
| |
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
| |
81.40.Vw
|
(Pressure treatment)
|
|
| Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFA1406200), the National Natural Science Foundation of China (Grant No. 12304067), the Natural Science Foundation of Shandong Province (Grant Nos. ZR2021QA087 and ZR2021QA092), and the Special Construction Project Fund for Shandong Province Taishan Scholars. |
Corresponding Authors:
Qinglin Wang, Cailong Liu
E-mail: wangqinglin@lcu.edu.cn;cailong_liu@lcu.edu.cn
|
Cite this article:
Huiyuan Guo(郭慧圆), Jialiang Jiang(姜家梁), Boyu Zou(邹博宇), Jie Cui(崔杰), Qinglin Wang(王庆林), Haiwa Zhang(张海娃), Guangyu Wang(王光宇), Guozhao Zhang(张国召), Kai Wang(王凯), Yinwei Li(李印威), and Cailong Liu(刘才龙) Magnetotransport properties of two-dimensional tellurium at high pressure 2025 Chin. Phys. B 34 087301
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Mi M J, Xiao H, Yu L X, Zhang Y X, Wang Y S, Cao Q and Wang Y L 2023 Mater. Today Nano 24 100408 [3] Zhang H M, Song D Z, Huang F Y, Zhang J and Jiang Y P 2023 Chin. Phys. B 32 066802 [4] Yu W T, Zhao L, Gao Y F, Gao S P, Yang Y K, Pan C, Liang S J and Cheng B 2025 Chin. Phys. B 34 018502 [5] Pan Y H, Lei B, Qiao J S, Hu Z X, Zhou W and Ji W 2020 Chin. Phys. B 29 086801 [6] Luo J, Qiao R and Ding B F 2024 Matter 7 3351 [7] Khazaei M, Arai M, Sasaki T, Estili M and Sakka Y 2014 Phys. Chem. Chem. Phys. 16 7841 [8] Anh D T K, Minh P H, Yamanoi K, Cadatal-Raduban M, Mui L V, Hieu D M and Hung N D 2024 Appl. Sci. 14 9257 [9] Xue Y H, Zhang Q, Wang W J, Cao H, Yang Q H and Fu L 2017 Adv. Energy Mater. 7 1602684 [10] Zhong F, Nie G Z, Lang Y F, Zhang Z W, Li H L, Gan L F, Xu Y and Zhao Y Q 2023 Phys. Chem. Chem. Phys. 25 3175 [11] Huang G W, Liu H, Wang S P, Yang X, Liu B H, Chen H Z and Xu M S 2015 J. Mater. Chem. A 3 24128 [12] LukowskiMA, Daniel A S, English C R, Meng F, Forticaux A, Hamers R J and Jin S 2014 Energy Environ. Sci. 7 2608 [13] Magda G Z, Jin X Z, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró L P and Tapasztó L 2014 Nature 514 608 [14] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289 [15] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W and Gao C L 2019 Science 366 983 [16] Calavalle F, Suárez-Rodríguez M, Martín-García B, Johansson A, Vaz D C, Yang H Z, Maznichenko I V, Ostanin S, Mateo-Alonso A, Chuvilin A, Mertig I, Gobbi M, Casanova F and Hueso L E 2022 Nat. Mater. 21 526 [17] Dong Z Y and Ma Y H 2020 Nat. Commun. 11 1588 [18] Ben-Moshe A, Da Silva A, Müller A, Abu-Odeh A, Harrison P, Waelder J, Niroui F, Ophus C, Minor A M, Asta M, Theis W, Ercius P and Alivisatos A P 2021 Science 372 729 [19] Wang Y, Lei Z Z, Zhang J S, Tao X Y, Hua C Q and Lu Y H 2023 Chin. Phys. Lett. 40 117102 [20] Zhang N, Cheng B, Li H, Li L and Zeng C G 2021 Chin. Phys. B 30 087304 [21] Niu C, Zhang Z C, Graf D, Lee S, Wang M Y, Wu W Z, Low T and Ye P D 2023 Commun. Phys. 6 345 [22] Zou B Y, Wang S, Wang Q L, Wang G Y, Zhang G Z, Jiang J L, Cui J, He J R, Xi H Z, Fu H L, Wang Z C, Wang C, Wang Q S and Liu C L 2024 Appl. Phys. Lett. 124 102105 [23] Li X, Sun J P, Shahi P, Gao M, MacDonald A H, Uwatoko Y, Xiang T, Goodenough J B, Cheng J G and Zhou J S 2018 Proc. Natl. Acad. Sci. USA 115 9935 [24] Ali M N, Schoop L M, Garg C, Lippmann J M, Lara E, Lotsch B and Parkin S S P 2016 Sci. Adv. 2 e1601742 [25] Li T, Wang S Y, Chen X L, Chen C H, Fang Y and Yang Z R 2024 Chin. Phys. B 33 066401 [26] Gong J, Wang H, Ma X P, Zeng X Y, Lin J F, Han K, Wang Y T and Xia T L 2024 Chin. Phys. B 33 077302 [27] Zhang N, Zhao G, Li L, Wang P D, Xie L, Cheng B, Li H, Lin Z Y, Xi C Y, Ke J Z, Yang M, He J Q, Sun Z, Wang Z F, Zhang Z Y and Zeng C G 2020 Proc. Natl. Acad. Sci. USA 117 11337 [28] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287 [29] Ideue T, Hirayama M, Taiko H, Takahashi T, Murase M, Miyake T, Murakami S, Sasagawa T and Iwasa Y 2019 Proc. Natl. Acad. Sci. USA 116 25530 [30] Li X, Huang X L, Wang X, Liu M K, Wu G, Huang Y P, He X, Li F F, Zhou Q, Liu B B and Cui T 2018 Phys. Chem. Chem. Phys. 20 6116 [31] Parthasarathy G and Holzapfel W B 1988 Phys. Rev. B 37 8499 [32] Ohmasa Y, Yamamoto I, Yao M and Endo H 1995 J. Phys. Soc. Jpn. 64 4766 [33] Wang J, Wang S Y, He X Y, Zhou Y, An C, Zhang M, Zhou Y H, Han Y Y, Chen X L, Zhou J and Yang Z R 2022 Phys. Rev. B 106 045106 [34] Zhang J L, Jin L, Chen J, Zhang C H, Li P, Yuan Y, Wen Y, Zhang Q, Zhang X M, Liu E K, Wang W H and Zhang X X 2021 New J. Phys. 23 083041 [35] Yao M G, Wåberg T and Sundqvist B 2010 Phys. Rev. B 81 155441 [36] Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z and Gao C X 2011 J. Appl. Phys. 109 053717 [37] Ohashi M, Oomi G, Ohmichi E, Osada T, Takano K, Sakurai H and Itoh F 2008 J. Appl. Phys. 104 073901 [38] Van Gorkom R P, Caro J, Klapwijk T M and Radelaar S 2001 Phys. Rev. B 63 134432 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|