Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087301    DOI: 10.1088/1674-1056/add5c9
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Magnetotransport properties of two-dimensional tellurium at high pressure

Huiyuan Guo(郭慧圆)1, Jialiang Jiang(姜家梁)1, Boyu Zou(邹博宇)1, Jie Cui(崔杰)1, Qinglin Wang(王庆林)1,†, Haiwa Zhang(张海娃)1, Guangyu Wang(王光宇)1, Guozhao Zhang(张国召)1, Kai Wang(王凯)1, Yinwei Li(李印威)2, and Cailong Liu(刘才龙)1,‡
1 School of Physics Science & Information Technology, Key Laboratory of Quantum Materials Under Extreme Conditions in Shandong Province, Liaocheng University, Liaocheng 252059, China;
2 Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
Abstract  Two-dimensional tellurium (2D-Te) exhibits strong spin-orbit coupling and a chiral structure. Studying its magnetotransport properties is crucial for the development of spintronic technologies and the exploration of novel device applications. The magnetotransport properties of 2D-Te under varying temperatures and high pressures warrant further study. In this paper, the magnetotransport behavior of 2D-Te under low-temperature and high-pressure conditions is investigated. At room temperature, the magnetoresistance (${\rm MR}$) increases with increasing magnetic field, exhibiting positive ${\rm MR}$ behavior below 4.3 GPa. During decompression, ${\rm MR}$ is almost constant with decreasing pressure. ${\rm MR}$ is more sensitive to pressure at lower temperatures.
Keywords:  magnetoresistance      2D-Te      high pressure      low temperature  
Received:  25 February 2025      Revised:  23 April 2025      Accepted manuscript online:  08 May 2025
PACS:  73.43.Qt (Magnetoresistance)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  81.40.Vw (Pressure treatment)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFA1406200), the National Natural Science Foundation of China (Grant No. 12304067), the Natural Science Foundation of Shandong Province (Grant Nos. ZR2021QA087 and ZR2021QA092), and the Special Construction Project Fund for Shandong Province Taishan Scholars.
Corresponding Authors:  Qinglin Wang, Cailong Liu     E-mail:  wangqinglin@lcu.edu.cn;cailong_liu@lcu.edu.cn

Cite this article: 

Huiyuan Guo(郭慧圆), Jialiang Jiang(姜家梁), Boyu Zou(邹博宇), Jie Cui(崔杰), Qinglin Wang(王庆林), Haiwa Zhang(张海娃), Guangyu Wang(王光宇), Guozhao Zhang(张国召), Kai Wang(王凯), Yinwei Li(李印威), and Cailong Liu(刘才龙) Magnetotransport properties of two-dimensional tellurium at high pressure 2025 Chin. Phys. B 34 087301

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Mi M J, Xiao H, Yu L X, Zhang Y X, Wang Y S, Cao Q and Wang Y L 2023 Mater. Today Nano 24 100408
[3] Zhang H M, Song D Z, Huang F Y, Zhang J and Jiang Y P 2023 Chin. Phys. B 32 066802
[4] Yu W T, Zhao L, Gao Y F, Gao S P, Yang Y K, Pan C, Liang S J and Cheng B 2025 Chin. Phys. B 34 018502
[5] Pan Y H, Lei B, Qiao J S, Hu Z X, Zhou W and Ji W 2020 Chin. Phys. B 29 086801
[6] Luo J, Qiao R and Ding B F 2024 Matter 7 3351
[7] Khazaei M, Arai M, Sasaki T, Estili M and Sakka Y 2014 Phys. Chem. Chem. Phys. 16 7841
[8] Anh D T K, Minh P H, Yamanoi K, Cadatal-Raduban M, Mui L V, Hieu D M and Hung N D 2024 Appl. Sci. 14 9257
[9] Xue Y H, Zhang Q, Wang W J, Cao H, Yang Q H and Fu L 2017 Adv. Energy Mater. 7 1602684
[10] Zhong F, Nie G Z, Lang Y F, Zhang Z W, Li H L, Gan L F, Xu Y and Zhao Y Q 2023 Phys. Chem. Chem. Phys. 25 3175
[11] Huang G W, Liu H, Wang S P, Yang X, Liu B H, Chen H Z and Xu M S 2015 J. Mater. Chem. A 3 24128
[12] LukowskiMA, Daniel A S, English C R, Meng F, Forticaux A, Hamers R J and Jin S 2014 Energy Environ. Sci. 7 2608
[13] Magda G Z, Jin X Z, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró L P and Tapasztó L 2014 Nature 514 608
[14] Bonilla M, Kolekar S, Ma Y J, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H and Batzill M 2018 Nat. Nanotechnol. 13 289
[15] Chen W J, Sun Z Y, Wang Z J, Gu L H, Xu X D, Wu S W and Gao C L 2019 Science 366 983
[16] Calavalle F, Suárez-Rodríguez M, Martín-García B, Johansson A, Vaz D C, Yang H Z, Maznichenko I V, Ostanin S, Mateo-Alonso A, Chuvilin A, Mertig I, Gobbi M, Casanova F and Hueso L E 2022 Nat. Mater. 21 526
[17] Dong Z Y and Ma Y H 2020 Nat. Commun. 11 1588
[18] Ben-Moshe A, Da Silva A, Müller A, Abu-Odeh A, Harrison P, Waelder J, Niroui F, Ophus C, Minor A M, Asta M, Theis W, Ercius P and Alivisatos A P 2021 Science 372 729
[19] Wang Y, Lei Z Z, Zhang J S, Tao X Y, Hua C Q and Lu Y H 2023 Chin. Phys. Lett. 40 117102
[20] Zhang N, Cheng B, Li H, Li L and Zeng C G 2021 Chin. Phys. B 30 087304
[21] Niu C, Zhang Z C, Graf D, Lee S, Wang M Y, Wu W Z, Low T and Ye P D 2023 Commun. Phys. 6 345
[22] Zou B Y, Wang S, Wang Q L, Wang G Y, Zhang G Z, Jiang J L, Cui J, He J R, Xi H Z, Fu H L, Wang Z C, Wang C, Wang Q S and Liu C L 2024 Appl. Phys. Lett. 124 102105
[23] Li X, Sun J P, Shahi P, Gao M, MacDonald A H, Uwatoko Y, Xiang T, Goodenough J B, Cheng J G and Zhou J S 2018 Proc. Natl. Acad. Sci. USA 115 9935
[24] Ali M N, Schoop L M, Garg C, Lippmann J M, Lara E, Lotsch B and Parkin S S P 2016 Sci. Adv. 2 e1601742
[25] Li T, Wang S Y, Chen X L, Chen C H, Fang Y and Yang Z R 2024 Chin. Phys. B 33 066401
[26] Gong J, Wang H, Ma X P, Zeng X Y, Lin J F, Han K, Wang Y T and Xia T L 2024 Chin. Phys. B 33 077302
[27] Zhang N, Zhao G, Li L, Wang P D, Xie L, Cheng B, Li H, Lin Z Y, Xi C Y, Ke J Z, Yang M, He J Q, Sun Z, Wang Z F, Zhang Z Y and Zeng C G 2020 Proc. Natl. Acad. Sci. USA 117 11337
[28] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[29] Ideue T, Hirayama M, Taiko H, Takahashi T, Murase M, Miyake T, Murakami S, Sasagawa T and Iwasa Y 2019 Proc. Natl. Acad. Sci. USA 116 25530
[30] Li X, Huang X L, Wang X, Liu M K, Wu G, Huang Y P, He X, Li F F, Zhou Q, Liu B B and Cui T 2018 Phys. Chem. Chem. Phys. 20 6116
[31] Parthasarathy G and Holzapfel W B 1988 Phys. Rev. B 37 8499
[32] Ohmasa Y, Yamamoto I, Yao M and Endo H 1995 J. Phys. Soc. Jpn. 64 4766
[33] Wang J, Wang S Y, He X Y, Zhou Y, An C, Zhang M, Zhou Y H, Han Y Y, Chen X L, Zhou J and Yang Z R 2022 Phys. Rev. B 106 045106
[34] Zhang J L, Jin L, Chen J, Zhang C H, Li P, Yuan Y, Wen Y, Zhang Q, Zhang X M, Liu E K, Wang W H and Zhang X X 2021 New J. Phys. 23 083041
[35] Yao M G, Wåberg T and Sundqvist B 2010 Phys. Rev. B 81 155441
[36] Liu B, Yang J, Han Y H, Hu T J, Ren W B, Liu C L, Ma Y Z and Gao C X 2011 J. Appl. Phys. 109 053717
[37] Ohashi M, Oomi G, Ohmichi E, Osada T, Takano K, Sakurai H and Itoh F 2008 J. Appl. Phys. 104 073901
[38] Van Gorkom R P, Caro J, Klapwijk T M and Radelaar S 2001 Phys. Rev. B 63 134432
[1] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[2] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[3] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[4] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[5] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[6] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[7] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[8] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[9] Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals
Yaofeng Xie(谢耀锋), Senhao Lv(吕森浩), Qi Qi(齐琦), Guojing Hu(胡国静), Ke Zhu(祝轲), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Ruwen Wang(王汝文), Chenyu Bai(白晨宇), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(8): 087303.
[10] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[11] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[12] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[13] Pressure dependent excited state dynamics behavior in CzCNDSB
Guang-Jing Hou(侯广静), Ting-Ting Wang(王亭亭), Cun-Fang Feng(冯存方), Hong-Yu Tu(屠宏宇), Yu Zhang(张宇), Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), Ping Lu(路萍), Tian Cui(崔田), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2025, 34(8): 087801.
[14] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[15] Modulation of exchange bias in Py/IrMn films by surface acoustic waves
Jie Dong(董洁), Shuai Mi(米帅), Meihong Liu(刘美宏), Huiliang Wu(吴辉亮), Jinxuan Shi(石金暄), Huifang Qiao(乔慧芳), Qian Zhao(赵乾), Teng-Fei Zhang(张腾飞), Chenbo Zhao(赵晨博), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2025, 34(8): 088502.
No Suggested Reading articles found!