Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086101    DOI: 10.1088/1674-1056/adcea2
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

High pressure synthesis, crystal structure and electronic properties of Ba3Hf(Se1-xTex)5 (x = 0-1)

Zelong Wang(王泽龙)1,†, Guodong Wang(王国东)2,†, Wenmin Li(李文敏)3,†, Runteng Chen(陈润滕)2, Lei Duan(段磊)2, Jianfa Zhao(赵建发)2,4, Zheng Deng(邓正)2,4, Jianfeng Zhang(张建丰)2,4,§, Tingjiang Yan(颜廷江)1,¶, Jun Zhang(张俊)2,4,‡, Xiancheng Wang(望贤成)2,4, and Changqing Jin(靳常青)2,4,#
1 Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China;
4 School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  Quasi one-dimensional polycrystalline samples of Ba$_{3}$Hf(Se$_{1-x}$Te$_{x}$)$_{5}$ ($x = 0$-1) are synthesized under high-temperature and high-pressure conditions. Using the powder x-ray diffraction technique and first-principles calculations, Ba$_{3}$HfSe$_{5}$ is identified as having a hexagonal structure with a space group of $P$6$_{3}$/mcm (193) and lattice constants of $a = 9.5756(1) $ Å, $c =6.3802(7) $ Å. The structure is composed of Hf(Se$_{1}$)$_{6}$ chains and Se$_{2}$ linear chains extending along the $c$-axis. As the doping content of Te increases, the lattice expands and leads to 5.8% and 7.3% increases of the $a$ and $c$ values and a 20.1% increase of the unit cell volume of Ba$_{3}$HfTe$_{5}$ compared to Ba$_{3}$HfSe$_{5}$. The detailed structural refinements show that the Hf vacancies decrease gradually as Te doping increases in the Ba$_{3}$Hf(Se$_{1-x}$Te$_{x}$)$_{5}$ ($x = 0$-1) materials, which leads to a decrease of electronic localization. In addition, the lower electronegativity of Te and the more extended orbitals with respect to Se contribute to orbital overlap between the inter chains. All these dominate the enhanced electron hopping, leading to a reduction of the bandgap from 1.95 eV to 0.23 eV for Ba$_{3}$Hf(Se$_{1-x}$Te$_{x}$)$_{5}$ ($x = 0$-1) materials as the Ba$_{3}$HfSe$_{5}$ evolves to Ba$_{3}$HfTe$_{5}$.
Keywords:  high pressure synthesis      quasi one-dimensional structure      band gap      Te doping  
Received:  02 April 2025      Revised:  11 April 2025      Accepted manuscript online:  21 April 2025
PACS:  61.05.cp (X-ray diffraction)  
  75.50.Lk (Spin glasses and other random magnets)  
  61.66.Fn (Inorganic compounds)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2023YFA1406001 and 2024YFA1408004) and the National Natural Science Foundation of China (Grant Nos. 12104488 and 12474097).
Corresponding Authors:  Jun Zhang, Jianfeng Zhang, Tingjiang Yan, Changqing Jin     E-mail:  zhang@iphy.ac.cn;zjf@iphy.ac.cn;tingjiangn@163.com;jin@iphy.ac.cn

Cite this article: 

Zelong Wang(王泽龙), Guodong Wang(王国东), Wenmin Li(李文敏), Runteng Chen(陈润滕), Lei Duan(段磊), Jianfa Zhao(赵建发), Zheng Deng(邓正), Jianfeng Zhang(张建丰), Tingjiang Yan(颜廷江), Jun Zhang(张俊), Xiancheng Wang(望贤成), and Changqing Jin(靳常青) High pressure synthesis, crystal structure and electronic properties of Ba3Hf(Se1-xTex)5 (x = 0-1) 2025 Chin. Phys. B 34 086101

[1] Dos Santos C A M, White B D, Yu Y K, Neumeier J J and Souza J A 2007 Phys. Rev. Lett. 98 266405
[2] Da Luz M S, Dos Santos C A M, Moreno J, White B D and Neumeier J J 2007 Phys. Rev. B 76 233105
[3] Nakamura H, Yamasaki T, Giri S, Imai H, Shiga M, Kojima K, Nishi M, Kakurai K and Metoki N 2000 J. Phys. Soc. Jpn. 69 2763
[4] Akrap A, Stevanović V, Herak M, Miljak M, Barišić N, Berger H and Forró L 2008 Phys. Rev. B 78 235111
[5] Duan L,Wang X C, Zhang J, Zhao J F, Cao L P, LiWM, Yu R Z, Deng Z and Jin C Q 2020 Chin. Phys. B 29 036102
[6] Duan L, Wang X C, Zhang J, Zhao J F, Li W M, Cao L P, Zhao Z W, Xiao C, Ren Y, Wang S, Zhu J and Jin C Q 2021 Chin. Phys. B 30 106101
[7] Giamarchi T 1991 Phys. Rev. B 44 2905
[8] Vescoli V, Degiorgi L, HendersonW, Grüner G, Starkey K P and Montgomery L K 1998 Science 281 1181
[9] Zhang J, Su R,Wang X C, LiWM, Zhao J F, Deng Z, Zhang S J, Feng S M, Liu Q Q, Zhao H Z, Guan P F and Jin C Q 2017 Inorg. Chem. Front. 4 1337
[10] Zhang J, Jia Y T,Wang X C, Li Z, Duan L, LiWM, Zhao J F, Cao L P, Dai G Y, Deng Z, Zhang S J, Feng S M, Yu R Z, Liu Q Q, Hu J P, Zhu J L and Jin C Q 2019 NPG Asia Mater. 11 60
[11] Almoussawi B, Tomohiri H, Kageyama H and Kabbour H 2021 Eur. J. Inorg. Chem. 2021 1271
[12] Zhang J, Liu M, Wang X C, Zhao K, Duan L, Li W M, Zhao J F, Cao L P, Dai G Y, Deng Z, Feng S M, Zhang S J, Liu Q Q, Yang Y F and Jin C Q 2018 J. Phys. Condens. Matter 30 214001
[13] Zhang J, Zhang X Y, Xia Y H, Zhao J F, Duan L, Wang G, Min B, Cao H, Dela Cruz C R, Zhao K, Sun H, Zhu J, Zhang J, Xiang T, Wang X and Jin C 2023 Phys. Rev. B 108 174423
[14] Zhang J, Komarek A C, Jin M, et al. 2021 Phys. Rev. Mater 5 054606
[15] Zhang J, Wang X C, Zhou L, et al. 2022 Adv. Mater. 34 2106728
[16] Duan L, Chen X M, Wang Z L, Wei Y T, Zhang J, Feng Y G, Wang S, Du S X, Zhao Z W, Xiao C J, Wang X C and Jin C Q 2024 J. Alloys Compd. 1007 176496
[17] Zhang J, Duan L, Wang Z, Wang X C, Zhao J F, Jin M L, Li W M, Zhang C L, Cao L P, Deng Z, Hu Z W, Agrestini S, Valvidares M, Lin H J, Chen C T, Zhu J L and Jin C Q 2020 Inorg. Chem. 59 5377
[18] Zhang J, Jin M L, Li X, Wang X C, Zhao J F, Liu Y, Duan L, Li W M, Cao L P, Chen B J, Wang L J, Sun F, Wang Y G, Yang L X, Xiao Y M, Deng Z, Feng S M, Jin C Q and Zhu J L 2020 Chin. Phys. Lett. 37 087106
[19] Bollore G, Ferguson M J, Hushagen R W and Mar A 1995 Chem. Mat. 7 2229
[20] Ferguson M J, Hushagen R W and Mar A 1997 J. Alloys Compd. 249 191
[21] Murakami T, Yamamoto T, Takeiri F, Nakano K and Kageyama H 2017 Inorg. Chem. 56 5041
[22] Duan L, Zhang J, Wang X C, Zhao J F, Cao L P, Li W M, Deng Z, Yu R Z, Li Z and Jin C Q 2020 J. Alloys Compd. 831 154697
[23] Duan L, Wang X C, Zhan F Y, Zhang J, Hu Z W, Zhao J F, Li W M, Cao L P, Deng Z, Yu R Z, Lin H J, Chen C T,Wang R and Jin C Q 2020 Sci. China Mater. 63 1750
[24] Duan L, Wang X C, Zhang J, Hu Z, Zhao J F, Feng Y G, Zhang H L, Lin H J, Chen C T, Wu W, Li Z, Wang R, Zhang J F, Xiang T and Jin C Q 2022 Phys. Rev. B 106 184405
[25] Duan L, Wang X C, Zhang J, Zhao J F, Zhao Z W, Xiao C J, Guan C L, Wang S, Shi L P, Zhu J L and Jin C Q 2022 J. Alloys Compd. 905 164214
[1] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[2] Band gap engineering and vibrational properties of van der Waals semiconductor ZnPSe3 under compression
Rouqiong Su(苏柔琼), Yuying Li(李玉莹), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), and Haizhong Guo(郭海中). Chin. Phys. B, 2025, 34(6): 066205.
[3] First-principles study of structural and electronic properties of multiferroic oxide Mn3TeO6 under high pressure
Xiao-Long Pan(潘小龙), Hao Wang(王豪), Lei Liu(柳雷), Xiang-Rong Chen(陈向荣), and Hua-Yun Geng(耿华运). Chin. Phys. B, 2024, 33(7): 076102.
[4] Size effect on light propagation modulation near band edges in one-dimensional periodic structures
Yang Tang(唐洋), Jiajun Wang(王佳俊), Xingqi Zhao(赵星棋), Tongyu Li(李同宇), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(5): 054201.
[5] Machine learning of the Γ-point gap and flat bands of twisted bilayer graphene at arbitrary angles
Xiaoyi Ma(马宵怡), Yufeng Luo(罗宇峰), Mengke Li(李梦可), Wenyan Jiao(焦文艳), Hongmei Yuan(袁红梅), Huijun Liu(刘惠军), and Ying Fang(方颖). Chin. Phys. B, 2023, 32(5): 057306.
[6] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[7] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[8] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[9] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[10] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[11] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[12] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[13] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[14] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[15] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
No Suggested Reading articles found!