|
|
|
New progress on DC H2+ beam generation: Tens of mA output and 70% fraction from a 2.45 GHz microwave driven ion source |
| Bujian Cui(崔步坚), Shixiang Peng(彭士香)†, Jianbin Zhu(朱建斌), Yicheng Dong(董宜承), Zhiyu Guo(郭之虞), and Jiaer Chen(陈佳洱) |
| State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China |
|
|
|
|
Abstract Recently H$_{2}^{+}$ ion beam finds widespread use in many fields, and the demand of high-current H$_{2}^{+}$ ion sources is urgent for numerous applications. However, there are currently almost no reported ion sources capable of generating a direct-current (DC) H$_{2}^{+}$ beam with tens of mA current. In previous work at Peking University (PKU), H$_{2}^{+}$ ion beams with a current of over 40 mA have been obtained in pulse mode, and a current of 16 mA was achieved in DC mode. In this paper, we report the generation of a DC H$_{2}^{+}$ ion beam with a current of 22 mA extracted from an improved miniaturized microwave driven ion source (MMDIS). Beam analysis shows that the H$_{2}^{+}$ fraction in the extracted beam is about 70%. The emittance of the mixed hydrogen beam is about 0.12 $\pi \cdot {\rm mm}\cdot {\rm mrad}$. These results provide references for the applications of H$_{2}^{+}$ beam and the design of H$_{2}^{+}$ ion source.
|
Received: 14 July 2025
Revised: 18 July 2025
Accepted manuscript online: 19 July 2025
|
|
PACS:
|
52.50.Dg
|
(Plasma sources)
|
| |
52.50.Sw
|
(Plasma heating by microwaves; ECR, LH, collisional heating)
|
| |
52.59.-f
|
(Intense particle beams and radiation sources)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975036). We appreciate the support from the State Key Laboratory of Nuclear Physics and Technology at PKU. |
Corresponding Authors:
Shixiang Peng
E-mail: sxpeng@pku.edu.cn
|
Cite this article:
Bujian Cui(崔步坚), Shixiang Peng(彭士香), Jianbin Zhu(朱建斌), Yicheng Dong(董宜承), Zhiyu Guo(郭之虞), and Jiaer Chen(陈佳洱) New progress on DC H2+ beam generation: Tens of mA output and 70% fraction from a 2.45 GHz microwave driven ion source 2025 Chin. Phys. B 34 085203
|
[1] Damodaran K K and Moon P B 1997 Proc. Roy. Soc. Lond. Ser. A. Math. Phys. Sci. 239 382 [2] Alonso J, Axani S, Calabretta L, Campo D, Celona L, Conrad J M, Day A, Castro G, Labrecque F and Winklehner D 2015 J. Instrum. 10 T10003 [3] Axani S, Winklehner D, Alonso J and Conrad J M 2015 Rev. Sci. Instrum. 87 02B704 [4] Wagner W, Seidel M, Morenzoni E, Groeschel F, Wohlmuther M and Daum M 2009 Nucl. Instrum. Methods Phys. Res., Sect. A 600 5 [5] Peng S X, Zhu F, Wang Z, Gao Y and Guo Z Y 2016 Nucl. Instrum. Methods Phys. Res., Sect. B 376 420 [6] Farhoodi K, Setayeshi S and Feghhi S A 2021 J. Instrum. 16 T11002 [7] Simakov S P, Bém P, Burjan V, Fischer U, Forrest R A, Götz M, Honusek M, Klein H, Kroha V, Novák J, Sauer A, Simečková E and Tiede R 2008 Fusion Eng. Des. 83 1543 [8] Tinschert K, Iannucci R and Lang R 2008 Rev. Sci. Instrum. 79 02C505 [9] Garonna A, Amaldi U, Bonomi R, Campo D, Degiovanni A, Garlasché M, Mondino I, Rizzoglio V and Andrés S V 2010 J. Instrum. 5 C09004 [10] Was G S, Jiao Z, Getto E, Sun K, Monterrosa A M, Maloy S A, Anderoglu O, Sencer B H and Hackett M 2014 Scr. Mater. 88 33 [11] Zhou Q, Togari A, Nakata M, Zhao M, Sun F, Yajima M, Tokitani M, Masuzaki S, Yoshida N, Hara M, Hatano Y and Oya Y 2020 Int. J. Hydrogen Energy 45 9959 [12] Cao Z, Li C, Ding Y, Cui D, Zhong Q and Ran G 2024 Materialia 38 102227 [13] Shull J M and Beckwith S 1982 Annu. Rev. Astron. Astrophys. 20 163 [14] Werbowy S and Pranszke B 2011 Astronomy & Astrophysics 535 A51 [15] Juodkazis K, Juodkazyt·e J, Grigucevičien·e A and Juodkazis S 2011 Appl. Surf. Sci. 258 743 [16] Shen Q, Ran G, Zhou W, Ye C, Feng Q and Li N 2018 Materials 11 282 [17] Winklehner D, Axani S, Bedard P, Conrad J, Corona J, Hartwell F, Smolsky J, Tripathee A, Waites L, Weigel P, Wester T and Yampolskaya M 2018 AIP Conf. Proc. 2011 030002 [18] Joshi N, Droba M, Meusel O and Ratzinger U 2009 Nucl. Instrum. Methods Phys. Res., Sect. A 606 310 [19] Oks E M, Shandrikov M V and Vizir A V 2015 Rev. Sci. Instrum. 87 02B703 [20] Castro G, Torrisi G, Celona L, Mascali D, Neri L, Sorbello G, Leonardi O, Patti G, Castorina G and Gammino S 2016 Rev. Sci. Instrum. 87 083303 [21] Bahng J, Kim Y, Lee Y W, Yu J, Nam S H, Choi B H and Jeon Y 2024 J. Phys. Conf. Ser. 2743 012054 [22] Winklehner D, Conrad J M, Smolsky J and Waites L H 2021 Rev. Sci. Instrum. 92 123301 [23] Bosi F, Guarducci F and Gabriel S 2021 J. Propul. Power 37 509 [24] Alonso J R, Calabretta L, Campo D, Celona L, Conrad J, Martinez R G, Johnson R, Labrecque F, Toups M H, Winklehner D and Winslow L 2014 Rev. Sci. Instrum. 85 02A742 [25] Jia X, Zhang T, Luo S, Wang C, Zheng X, Yin Z, Zhong J, Wu L and Qin J 2010 Rev. Sci. Instrum. 81 02A321 [26] Wu W, Peng S, Ma T, Ren H, Zhang J, Zhang T, Jiang Y, Li K, Xu Y, Zhang A, Wen J, Guo Z and Chen J 2019 Rev. Sci. Instrum. 90 101501 [27] Xu Y, Peng S, Ren H, Zhao J, Chen J, Zhang A, Zhang T, Guo Z and Chen J E 2013 Rev. Sci. Instrum. 85 02A943 [28] Peng S, Ma T, Cui B, Wu W, Jiang Y, Guo Z and Chen J 2024 J. Phys. Conf. Ser. 2743 012056 [29] Wu W, Peng S, Zhang A, Ma T, Jiang Y, Li K, Cui B, Guo Z and Chen J 2022 J. Appl. Phys. 132 [30] Peng S X, Ma T H, Wu W B, Cui B J, Zhang A L, Jiang Y X, Guo Z Y and Chen J E 2023 Radiat. Detect. Technol. Methods [31] Wu W B, Peng S X, Ren H T, Xu Y, Wen J M, Zhang A L, Zhang T, Zhang J F, Sun J, Guo Z Y and Chen J E 2018 AIP Conf. Proc. 2011 020004 [32] Peng S X, Xu R, Zhao J, Yuan Z X, Zhang M, Song Z Z, Yu J X, Lu Y R and Guo Z Y 2008 Rev. Sci. Instrum. 79 02A310 [33] King R F, Surrey E and Holmes A J T 2008 Fusion Eng. Des. 83 1553 [34] Wu W, Zhang A, Peng S, Ma T, Jiang Y, Li K, Zhang J, Zhang T, Wen J, Xu Y, Guo Z and Chen J 2020 Vacuum 182 [35] Asadi Aghbolaghi M, Abbasi Davani F, Yarmohammadi Satri M, Riazi Mobaraki Z and Ghasemi F 2024 J. Theor. Appl. Phys. 18 [36] Cui B, Peng S, Wu W, Ma T, Jiang Y, Li K, Zhang A, Sun J, Zhang J, Guo Z and Chen J 2021 Contrib. Plasma Phys. 61 e202100048 [37] Cui B, Peng S, Wu W, Ma T, Jiang Y, Guo Z and Chen J 2023 J. Instrum. 18 P10038 [38] Wu W B, Peng S X, Ma T H, Jiang Y X, Ren H T, Li K, Zhang J F, Xu Y, Zhang A L, Zhang T, Wen J M, Sun J, Guo Z Y and Chen J E 2020 J 2020 J. Instrum. 15 P03028 [39] Lv P, Peng S, Guo Z, Yuan Z, Ren H, Zhao J, Zhang M, Chen J and Lu Y 2011 Sci. China Phys., Mech. Astron. 54 287 [40] Wu W, Ren H, Peng S, Xu Y, Wen J, Zhang T, Zhang J, Zhang A, Sun J, Guo Z and Chen J 2018 Sci. China Phys., Mech. Astron. 61 045211 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|