CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon |
Ya-Bin Ma(马亚斌)1,2, Tao Ouyang(欧阳滔)1, Yuan-Ping Chen(陈元平)1,2,†, and Yue-E Xie(谢月娥)1,2,‡ |
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; 2 Faculty of Science, Jiangsu University, Zhenjiang 212013, China |
|
|
Abstract Owing to the interaction between the layers, the twisted bilayer two-dimensional (2D) materials exhibit numerous unique optical and electronic properties different from the monolayer counterpart, and have attracted tremendous interests in current physical research community. By means of first-principles and tight-binding model calculations, the electronic properties of twisted bilayer biphenylene carbon (BPC) are systematically investigated in this paper. The results indicate that the effect of twist will not only leads to a phase transition from semiconductor to metal, but also an adjustable band gap in BPC (0 meV to 120 meV depending on the twist angle). Moreover, unlike the twisted bilayer graphene (TBG), the flat bands in twisted BPC are no longer restricted by “magic angles” i.e., abnormal flat bands could be appeared as well at several specific large angles in addition to the small angles. The charge density of these flat bands possesses different local modes, indicating that they might be derived from different stacked modes and host different properties. The exotic physical properties presented in this work foreshow twisted BPC a promising material for the application of terahertz and infrared photodetectors and the exploration of strong correlation.
|
Received: 21 April 2021
Revised: 07 May 2021
Accepted manuscript online: 13 May 2021
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.21.Ac
|
(Multilayers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874314) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2377). |
Corresponding Authors:
Yuan-Ping Chen, Yue-E Xie
E-mail: chenyp@ujs.edu.cn;yueex@ujs.edu.cn
|
Cite this article:
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥) Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon 2021 Chin. Phys. B 30 077103
|
[1] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [2] Enyashin A N and Ivanovskii A L 2011 Phys. Status Solidi B 248 1879 [3] Wang J, Deng S, Liu Z and Liu Z 2015 Natl. Sci. Rev. 2 22 [4] Hass J, de Heer W A and Conrad E H 2008 J. Phys.: Condens. Matter 20 323202 [5] Mak K F, Shan J and Heinz T F 2010 Phys. Rev. Lett. 104 176404 [6] Lin C Y, Wu J Y, Chiu Y H, Chang C P and Lin M F 2014 Phys. Rev. B 90 205434 [7] Nimbalkar A and Kim H 2020 Nano-Micro Lett. 12 126 [8] Gargiulo F and Yazyev O V 2017 2D Mater. 5 015019 [9] Chen Y C, Lin W H, Tseng W S, Chen C C, Rossman G R, Chen C D, Wu Y S and Yeh N C 2020 Carbon 156 212 [10] Deng B, Wang B, Li N, Li R, Wang Y, Tang J, Fu Q, Tian Z, Gao P, Xue J and Peng H 2020 ACS Nano 14 1656 [11] Yan W, He W Y, Chu Z D, Liu M, Meng L, Dou R F, Zhang Y, Liu Z, Nie J C and He L 2013 Nat. Commun. 4 2159 [12] Qiao J B, Yin L J and He L 2018 Phys. Rev. B 98 235402 [13] Alden J S, Tsen A W, Huang P Y, Hovden R, Brown L, Park J, Muller D A and McEuen P L 2013 Proc. Natl. Acad. Sci. USA 110 11256 [14] Huder L, Artaud A, Le Quang T, de Laissardiere G T, Jansen A G M, Lapertot G, Chapelier C and Renard V T 2018 Phys. Rev. Lett. 120 156405 [15] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [16] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [17] Po H C, Zou L J, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089 [18] Liu J P and Dai X 2020 npj Comput. Mater. 6 57 [19] Sanchez-Yamagishi J D, Taychatanapat T, Watanabe K, Taniguchi T, Yacoby A and Jarillo-Herrero P 2012 Phys. Rev. Lett. 108 076601 [20] Liu J P and Dai X 2020 Acta Phys. Sin. 69 147301 (in Chinese) [21] Zhang Y, Hou Z, Zhao Y X, Guo Z H, Liu Y W, Li S Y, Ren Y N, Sun Q F and He L 2020 Phys. Rev. B 102 081403 [22] He W Y, Goldhaber-Gordon D and Law K T 2020 Nat. Commun. 11 1650 [23] Xian L, Kennes D M, Tancogne-Dejean N, Altarelli M and Rubio A 2019 Nano Lett. 19 4934 [24] Wu X, Fu C and Zhang Z M 2019 Opt. Commun. 452 124 [25] Zhao X J, Yang Y, Zhang D B and Wei S H 2020 Phys. Rev. Lett. 124 086401 [26] Zhang Y P, Zhan Z, Guinea F, Silva-Guillen J A and Yuan S J 2020 Phys. Rev. B 102 235418 [27] Naik M H, Kundu S, Maity I and Jain M 2020 Phys. Rev. B 102 075413 [28] Venkateswarlu S, Honecker A and de Laissardiere G T 2020 Phys. Rev. B 102 081103 [29] Conte F, Ninno D and Cantele G 2019 Phys. Rev. B 99 155429 [30] Yu X, Yu P, Wu D, Singh B, Zeng Q, Lin H, Zhou W, Lin J, Suenaga K, Liu Z and Wang Q J 2018 Nat. Commun. 9 1545 [31] Ryzhii V and Ryzhii M 2009 Phys. Rev. B 79 245311 [32] Wang J, Huang H, Duan W and Liu Z 2013 J. Chem. Phys. 139 184701 [33] Sui C, Zhao Y, Zhang Z, He J, Zhang Z, He X, Wang C and Wu J 2017 ACS Omega 2 3977 [34] Xu L C, Wang R Z, Miao M S, Wei X L, Chen Y P, Yan H, Lau W M, Liu L M and Ma Y M 2014 Nanoscale 6 1113 [35] Morresi T, Pedrielli A, Beccara S A, Gabbrielli R, Pugno N M and Taioli S 2020 Carbon 159 512 [36] Cui C, Ouyang T, Tang C, He C, Li J, Zhang C and Zhong J 2021 Carbon 176 52 [37] Yan P, Ouyang T, He C, Li J, Zhang C, Tang C and Zhong J 2021 Nanoscale 13 3564 [38] Shao Z G and Sun Z L 2015 Phys. E (Amsterdam, Neth.) 74 438 [39] Kilde M D, Murray A H, Andersen C L, Storm F E, Schmidt K, Kadziola A, Mikkelsen K V, Hampel F, Hammerich O, Tykwinski R R and Nielsen M B 2019 Nat. Commun. 10 3714 [40] Puigdollers A R, Alonso G and Gamallo P 2016 Carbon 96 879 [41] Zhang S, Zhou J, Wang Q, Chen X, Kawazoe Y and Jena P 2015 Proc. Natl. Acad. Sci. USA 112 2372 [42] Gong Z H, Shi X Z, Li J, Li S, He C Y, Ouyang T, Zhang C, Tang C and Zhong J X 2020 Phys. Rev. B 101 155427 [43] Yin W J, Xie Y E, Liu L M, Wang R Z, Wei X L, Lau L, Zhong J X and Chen Y P 2013 J. Mater. Chem. A 1 5341 [44] Chen Y P, Xu S L, Xie Y, Zhong C Y, Wu C J and Zhang S B 2018 Phys. Rev. B 98 035135 [45] Song Q, Wang B, Deng K, Feng X, Wagner M, Gale J D, Müllen K and Zhi L 2013 J. Mater. Chem. C 1 38 [46] Brunetto G, Autreto P A S, Machado L D, Santos B I, dos Santos R P B and Galvao D S 2012 J. Phys. Chem. C 116 12810 [47] Luder J, Puglia C, Ottosson H, Eriksson O, Sanyal B and Brena B 2016 J. Chem. Phys. 144 024702 [48] Du Q S, Tang P D, Huang H L, Du F L, Huang K, Xie N Z, Long S Y, Li Y M, Qiu J S and Huang R B 2017 Sci. Rep. 7 40796 [49] Zou L, Po H C, Vishwanath A and Senthil T 2018 Phys. Rev. B 98 085435 [50] Moon P and Koshino M 2013 Phys. Rev. B 87 205404 [51] Moon P and Koshino M 2012 Phys. Rev. B 85 195458 [52] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087 [53] Trambly de Laissardiere G, Mayou D and Magaud L 2010 Nano Lett. 10 804 [54] Guerrero-Avilés R and Orellana W 2018 Int. J. Hydrogen Energy 43 22966 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|