Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 116301    DOI: 10.1088/1674-1056/abf128
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications

Muhammad Rashid1,†, Jamil M2, Mahmood Q3,4, Shahid M Ramay5,‡, Asif Mahmood A6, and Ghaithan H M5
1 Department of Physics, Ghazi University City Campus, Dera Ghazi Khan, 32200, Pakistan;
2 Department of Physics, COMSATS University Islamabad, Islamabad 44000, Pakistan;
3 Basic and Applied Scientific Research Center(BASRC), College of Science of Dammam, Imam Abdulrahman Bin Faisal University, P. O. Box 383, Dammam 31113, Saudi Arabia;
4 Department Physics, College of Science, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia;
5 Physics and Astronomy Department, College of Science, King Saud University, Riyadh, Saudi Arabia;
6 Chemical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia
Abstract  The Ⅲ-V alloys and doping to tune the bandgap for solar cells and other optoelectronic devices has remained a hot topic of research for the last few decades. In the present article, the bandgap tuning and its influence on optical properties of In1-xGaxN/P, where (x = 0.0, 0.25, 0.50, 0.75, and 1.0) alloys are comprehensively analyzed by density functional theory based on full-potential linearized augmented plane wave method (FP-LAPW) and modified Becke and Johnson potentials (TB-mBJ). The direct bandgaps turn from 0.7 eV to 3.44 eV, and 1.41 eV to 2.32 eV for In1-xGaxN/P alloys, which increases their potentials for optoelectronic devices. The optical properties are discussed such as dielectric constants, refraction, absorption, optical conductivity, and reflection. The light is polarized in the low energy region with minimum reflection. The absorption and optical conduction are maxima in the visible region, and they are shifted into the ultraviolet region by Ga doping. Moreover, static dielectric constant ε1(0) is in line with the bandgap from Penn's model.
Keywords:  density functional theory      direct bandgap III-V semiconductors      tuning of optical band gap      solar cell applications  
Received:  06 February 2021      Revised:  18 March 2021      Accepted manuscript online:  25 March 2021
PACS:  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  63.20.-e (Phonons in crystal lattices)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  72.40.+w (Photoconduction and photovoltaic effects)  
Corresponding Authors:  Muhammad Rashid, Shahid M Ramay     E-mail:  rapakistana@yahoo.com,mrashid@gudgk.edu.pk;schaudhry@ksu.edu.sa

Cite this article: 

Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications 2021 Chin. Phys. B 30 116301

[1] Jungwirth T, Sinova J, Mašek J, Kušra J and MacDonald A H 2006 Rev. Mod. Phys. 78 809
[2] Celik O, Tiras E, Ardali S, Lisesivdin S B and Ozbay E 2011 Phys. Status Solidi C 8 1625
[3] Saini H S, Singh M, Reshak A H and Ashyap M K 2012 J. Alloys. Compnd. 536 214
[4] Fan S W, Yao K L, Huang Z G, Zhang J, Gao G Y and Du G H 2009 Chem. Phys. Lett. 482 62
[5] Kulatov E, Nakayama H, Mariette H, Ohta H and Uspenskii Y A 2002 Phys. Rev. B 66 045203
[6] Ronning C, GaoP X, Ding Y, Wang Z L and Schwen D 2004 Appl. Phys. Lett. 84 783
[7] Esmaeili M, Gholam M, Haratizadeh H, et al. 2009 Opto-Electron. Rev. 17 293
[8] Jiang H X and Lin J Y 2002 Opto-Electron. Rev. 10 271
[9] Wu J, Haller E E, Lu H, Schaff W J, Saito Y and Nanishi Y 2002 Appl. Phys. Lett. 80 3967
[10] Matsuoka T, Okamoto H, Nakao M, Harima H and Kurimoto E 2002 Appl. Phys. Lett. 81 1246
[11] Amin B, Ahmad I, Maqbool M, Goumri-Said S and Ahmad R 2011 J. Appl. Phys. 109 023109
[12] Kanaya H, Yaguchi H, Hijikata Y, Yoshida S, Miyoshi S and Onabe K 2003 Phys. Status Solidi (c) 7 2753
[13] Shan W, Walukiewicz W, Yu K M, Wu J, Ager J W Ⅲ, Haller E E, Xin H P and Tu C W 2000 Appl. Phys. Lett. 76 3251
[14] Kent P R C and Zunger A 2001 Phys. Rev. B 64 115208
[15] Rudko Yu G, Buyanova I A, Chen W M, Xin H P and Tu C W 2002 Appl. Phys. Lett. 81 3984
[16] Yoon S, Seong M J, Geisz J F, Duda A and Mascarenhas A 2003 Phys. Rev. B 67 235209
[17] Leibiger G, Gottschalch V, Schubert M, Benndorf G and Schwabe R 2002 Phys. Rev. B 65 245207
[18] Adachi S 2005 Properties of group-IV, Ⅲ-V and Ⅱ-VI semiconductors, series in materials for electronic and optoelectronic application, MS Dissertation (New York)
[19] Madelung O 1996 Semiconductors-Basic Data, 2nd edn. (Berlin: Springer)
[20] Lyons J L, Janotti A and Van de Walle C G 2014 Phys. Rev. B 89 035204
[21] Moon R L, Antypasj G A and James L W 1974 J. Electron. Mater. 3 635
[22] Laref A, Hussain Z, Laref S, Yang J T, Xiong Y C and Luo S J 2018 J. Phys. Chem. Solids 115 352
[23] Omkar J, Ian F, Christiana H and Sarah K 2007 Appl. Phys. Lett. 91 132117
[24] Murayama M and Nakayama T 1994 Phys. Rev. B 49 4710
[25] Sibirev N V, Timofeeva W A, Bolshakov A D, Nazarenko M V and Dubrovskii V 2010 Phys. Solid. State 52 1531
[26] De Vos A 1992 Endoreversible Thermodynamics of Solar Energy Conversion (Oxford: Oxford University Press)
[27] Laref A, Altujar A, Laref S and Luo S J 2017 Solar Energy 142 231
[28] Laref A, Altujar A and Luo S J 2014 Appl. Phys. A 117 1451
[29] Ernzerhof M and Scuseria E G 1999 J. Chem. Phys. 110 5029
[30] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[31] Kohn W and Sham L 1965 J. Phys. Rev. 140 1133
[32] Perdew J P and Burke K M 1996 Phys. Rev. Lett. 77 3865
[33] Becke A D 1993 J. Chem. Phys. 98 1372
[34] Ropo M, Kokko K and Vitos L 2008 Phys. Rev. B 77 195445
[35] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943
[36] Tran F and Blaha P 2009 Phys. Rev. Lett. 102 226401
[37] Koller D, Tran F and Blaha P 2012 Phys. Rev. B 85 155109
[38] Tian F, Lin D Y, Gao X, Zhao Y F and Song H F 2020 J. Chem. Phys. 153 034101
[39] Vitiello S A, Runge K J, Chester G V and Kalos M H 1990 Phys. Rev. B 42 228
[40] Laref A, Altujar A and Luo S J 2014 Appl. Phys. A 117 1451
[41] Al-Douri Y 2013 Procedia Engineering 53 400
[42] Ziane M I, Bensaad Z, Labdelli B and Bennacer H 2014 Sensors Transducers 27 374
[43] Said A, Debbichi M and Said M 2016 Optik 127 9212
[44] Yangyz Z and Xu Z 1996 J. Phys.: Condens. Matter 8 8303
[45] Gorczyca I, Suski T, Strak P, Staszczak G and Christensen N E 2017 Sci. Rep. 7 16055
[46] Magnuson M, Mattesini M, Hoglund C, Birch J and Hultman L 2010 Phys. Rev. B 81 085125
[47] Rinke P, Scheffler M, Qteish A, Winkelnkemper M, Bimberg D and Neugebauer J 2006 Appl. Phys. Lett. 89 161919
[48] Inushima T, Mamutin V V, Vekshin V A, Ivanov S V, Sakon T, Motokawac M and Ohoya S 2001 J. Crystal Growth 227-228 481
[49] Mahmood Q, Rashid M, Hassan M, Yaseen M, Laref A and Haq B U 2019 Phys. Scr. 94 105812
[50] Kaf A, Khodja F D, Saadaoui F, Chibani S, Bentayeb A and Khodja M D 2020 J. Comput. Electron. 19 26
[51] Haq B U, Ahmed R, Shaari A, Hassan F E H, Kanounc M B and Goumri-Said S 2014 Solar Energy 107 543
[52] Reshak H A, Mikhail Y S, Saeed Y, Kityk I V and Auluck S 2011 J. Phys. Chem. B 115 2836
[53] Wooten F 1972 Optical Properties of Solids (New York: Academic)
[54] Penn D R 1962 Phys. Rev. 128 2093
[55] Cai M M, Yin Z and Zhang M S 2003 Appl. Phys. Lett. 83 2805
[56] Bhamu K C, Soni A and Sahariya J 2018 Solar Energy 162 336
[57] Haq B U, Ahmed R and Goumri-Said S 2014 Solar Energy Mater. Solar Cells 130 6
[58] Ali N, Ahmed R, Haq B U, Shaari A, Hussain R and Goumri-Said S 2015 Solar Energy 113 25
[59] Rehman S U, Butt F K, Haq B U, AlFaify S, Khan W S and Li C 2018 Solar Energy 169 648
[60] Haq B U, Ahmed R, Hassan F El H, Khenata R, Kasmin M K and Goumri-Said S 2014 Solar Energy 100 1
[61] Yao H, Snyder P G and Woollam J A 1991 J. Appl. Phys. 70 3261
[62] Mahmood Q, Rouf S A, Rashid M, Sajjad M, Jamil M and Laref A 2019 Zeitschrift fur Naturforschung September 2, 2019
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!