Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 028505    DOI: 10.1088/1674-1056/abc164

Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures

Rui-Rui Cui(崔瑞瑞)1, Jun Zhang(张俊)2, Zi-Jiang Luo(罗子江)1, Xiang Guo(郭祥)1, Zhao Ding(丁召)1, and Chao-Yong Deng(邓朝勇)1,
1 Power Semiconductor Device Reliability Center of the Ministry of Education, Department of Electronic Science, College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China; 2 College of Computer and Information Engineering, Guizhou University of Commerce, Guiyang 550014, China
Abstract  The β -Ga2O3 films are prepared on polished Al2O3 (0001) substrates by pulsed laser deposition at different oxygen partial pressures. The influence of oxygen partial pressure on crystal structure, surface morphology, thickness, optical properties, and photoluminescence properties are studied by x-ray diffraction (XRD), atomic force microscope (AFM), scanning electron microscope (SEM), spectrophotometer, and spectrofluorometer. The results of x-ray diffraction and atomic force microscope indicate that with the decrease of oxygen pressure, the full width at half maximum (FWHM) and grain size increase. With the increase of oxygen pressure, the thickness of the films first increases and then decreases. The room-temperature UV-visible (UV-Vis) absorption spectra show that the bandgap of the β -Ga2O3 film increases from 4.76 eV to 4.91 eV as oxygen pressure decreasing. Room temperature photoluminescence spectra reveal that the emission band can be divided into four Gaussian bands centered at about 310 nm (∼ 4.0 eV), 360 nm (∼ 3.44 eV), 445 nm (∼ 2.79 eV), and 467 nm (∼ 2.66 eV), respectively. In addition, the total photoluminescence intensity decreases with oxygen pressure increasing, and it is found that the two UV bands are related to self-trapped holes (STHs) at O1 sites and between two O2-s sites, respectively, and the two blue bands originate from V Ga 2- at Ga1 tetrahedral sites. The photoluminescence mechanism of the films is also discussed. These results will lay a foundation for investigating the Ga2O3 film-based electronic devices.
Keywords:  β -Ga2O3      pulsed laser deposition      band gap      photoluminescence  
Received:  24 August 2020      Revised:  21 September 2020      Accepted manuscript online:  15 October 2020
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  81.15.Fg (Pulsed laser ablation deposition)  
  81.10.Pq (Growth in vacuum)  
Fund: Project supported by the Guizhou Provincial Science and Technology Planning Project, China (Grant No. 2018-5781), the National Natural Science Foundation of China (Grant No. 51762010), the Guizhou Provincial Science and Technology Foundation, China (Grant Nos. 2020-1Y021 and 2020-1Y271), and the Guizhou Provincial High-level Innovative Talents, China (Grant No. 2018-4006).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇) Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures 2021 Chin. Phys. B 30 028505

1 Zhang J Y, Shi J L, Qi D C, Chen L and Zhang K H L 2020 APL Mater. 8 020906
2 Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Tech. 31 034001
3 Rath P, Ummethala S, Nebel C and Pernice W H P 2015 Phys. Status Solidi (a) 212 2385
4 Nikolaev V I, Maslovc V, Stepanov S I, Pechnikov A I, Krymov V, Nikitin I P, Guzilova L I, Bougrov V E and Romanov A E 2017 J. Cryst. Growth 457 132
5 Yu X W, Cui H Y, Zhu M D, Xia Z L and Sai Q L 2019 Chin. Phys. B 28 077801
6 Hoshikawa K, Ohba E, Kobayashi T, Yanagisawa J, Miyagawa C and Nakamura Y 2016 J. Cryst. Growth 447 36
7 Kalarickal N K, Xia Z B, McGlone J, Krishnamoorthy S, Moore W, Brenner M, Arehart A R, Ringe S A and Rajan S 2019 Appl. Phys. Lett. 115 152106
8 Yang X K, Du X J, He L N, Wang D, Zhao C C, Liu J, Ma J and Xiao H D 2020 J. Mater. Sci. 55 8231
9 Rafique S, Han L, Tadjer M J, Freitas J A, Mahadik N A and Zhao H P 2016 Appl. Phys. Lett. 108 182105
10 Zhang Y F, Chen X H, Xu Y, Ren F F, Gu S L, Zhang R, Zheng Y D and Ye J D 2019 Chin. Phy. B 28 028501
11 Shi Q, Wang Q R, Zhang D, Wang Q L, Li S H, Wang W J, Fan Q L and Zhang J Y 2019 J. Lumin. 206 53
12 Mazeina L, Picard Y N, Maximenko S I, Perkins F K, Glaser E R, Twigg M E, Freitas J A, Jr. and Prokes S M 2009 Cryst. Growth Des. 9 4471
13 Wu Z P, Bai G X, Qu Y Y, Guo D Y, Li L H, Li P G, Hao J H and Tang W H 2016 Appl. Phys. Lett. 108 211903
14 Vu T K, Lee D U and Kim E K 2019 J. Alloys Compd. 806 874
15 Liu H, Xu C X, Pan X H and Ye Z Z 2020 J. Electron. Mater. 49 4544
16 Berencén Y, Xie Y, Wang M, Prucnal S, Rebohle L and Zhou S Q 2019 Semicond. Sci. Technol. 34 035001
17 Feng Q, Li F G, Dai B, Jia Z T, Xie W L, Xu T, Lu X L, Tao X T, Zhang J C and Hao Y 2015 Appl. Surf. Sci. 359 847
18 Jangir R, Ganguli T, Porwal S, Tiwari P, Rai S K, Bhaumik I, Kukreja L M, Gupta P K and Deb S K 2013 J. Appl. Phys. 114 074309
19 Wang L2016 Scientist 004 163
20 Chen X H, Han S, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Xu W Y, Liu X K and Zhu D L 2018 J. Alloys Compd. 747 869
21 Lu Y M, Li C, Chen X H, Han S, Cao P J, Jia F, Zeng Y X, Liu X K, Xu W Y, Liu W J and Zhu D L 2019 Chin. Phys. B 28 018504
22 Zhang F B, Li H O,Guo Q X 2018 J. Electron. Mater. 47 6635
23 Tak B R, Dewan S, Goyal A, Pathak R, Gupta V, Kapoor A K, Nagarajan S and Singh R 2019 Appl. Surf. Sci. 465 973
24 Guo D Y, Li P G, Chen Z W, Wu Z P and Tang W H 2019 Acta Phys. Sin. 68 078501 (in Chinese)
25 Kumar S S, Rubio E J, Noor-A-Alam M, Martinez G, Manandhar S, Shutthanandan V, Thevuthasan S and Ramana C V 2013 J. Phys. Chem. C 117 4194
26 Guo L, Shen X, Zhu G and Chen K 2011 Sens. Actuators B Chem. 155 752
27 Knei\ss M, Hassa A, Splith D, Sturm C, Wenckstern H, Schultz T, Koch N, Lorenz M and Grundmann M 2019 APL Mater. 7 022516
28 Kim H, Horwitz J S, Pique A, Gilmore C M and Chrisey D B 1999 Appl. Phys. A 69 S447
29 Heinemann M D, Berry J, Teeter G, Unold T and Ginley D 2016 Appl. Phys. Lett. 108 013504
30 Wu Z P, Bai G X, Hu Q R, Guo D Y, Sun C L, Ji L Y, Lei M, Li L H, Li P G, Hao J H and Tang W H 2015 Appl. Phys. Lett. 106 171910
31 Frodason Y K, Johansen K M, Vines and Varley J B 2020 J. Appl. Phys. 127 075701
32 Jiang J L, Zhang J and Song Z C 2020 J. Lumin. 221 117048
33 Mi W, Luan C N, Li Z, Zhao C S, Feng X J and Ma J 2013 Opt. Mater. 35 2624
34 Harwing T and Kellendouk F J. 1978 Solid State Chem. 24 255
35 Vasilotasiv V I, Zakharko Y M and Prim Y I1988 Ukr. Fiz. Zh. 33 1320
36 Ho Q D, Frauenheim T and De\'ak P 2018 Phys. Rev. B 97 115163
37 Onuma T, Fujioka S, Yamaguchi T, Higashiwaki M, Sasaki K, Masui T and Honda T 2013 Appl. Phys. Lett. 103 041910
38 Binet L and Gourier D 1988 J. Phys. Chem. Solids 59 1241
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[4] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[5] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[8] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[9] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[10] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[11] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[12] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[13] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[14] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[15] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
No Suggested Reading articles found!