Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086102    DOI: 10.1088/1674-1056/add4e1
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure

Boyang Fu(符博洋)1, Wenfeng Zhou(周文风)2, Fuyang Liu(刘扶阳)3, Luhong Wang(王鲁红)4, Haozhe Liu(刘浩哲)3, Sheng-Ping Guo(郭胜平)5,†, and Weizhao Cai(蔡伟照)1,‡
1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China;
2 School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China;
3 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China;
4 Shanghai Advanced Research in Physical Sciences, Shanghai 201203, China;
5 Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Material and Energy, Yunnan University, Kunming 650091, China
Abstract  The recently discovered mixed-valence compound Eu$_{9}$MgS$_{2}$B$_{20}$O$_{41}$ is composed of triple-kagomé-layers separated by nonmagnetic Mg$^{2+}$ ions, and intervalence charge transfer has been observed in the mixed Eu$^{2+}$ and Eu$^{3+}$ ions within the kagomé layers, exhibiting similar characteristics typical of a quantum spin liquid. In this study, high-pressure in situ x-ray diffraction measurements on Eu$_{9}$MgS$_{2}$B$_{20}$O$_{41}$ were conducted within the range of 0.1 MPa to 64.4 GPa. The results revealed that the stabilization of the ambient-pressure phase, with no transition from mixed valence to single valence observed within the studied pressure range. The bulk modulus of the sample was determined to be 167.3(28) GPa and 180.8(17) GPa, for the single-crystal and powder x-ray diffraction data at room temperature, respectively. These values correspond to approximately 40% of the bulk modulus of diamond. Moreover, absorption spectroscopy measurements were carried out up to 37.9 GPa, revealing a $\sim 20$% reduction in the energy band gap, mainly due to the shortened Eu-O bond lengths. The relationship between pressure and band gap demonstrates a nearly linear trend, with a slope of $-0.013$ eV/GPa. The findings of the present study imply that the studied sample demonstrates considerable robustness under extreme pressures.
Keywords:  diamond anvil cells      x-ray diffraction      crystal structure      high pressure  
Received:  28 February 2025      Revised:  24 April 2025      Accepted manuscript online:  07 May 2025
PACS:  61.05.cp (X-ray diffraction)  
  74.62.Bf (Effects of material synthesis, crystal structure, and chemical composition)  
  52.77.Fv (High-pressure, high-current plasmas)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: We acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 12274062 and 22371246). Part of this work was carried out at the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  Sheng-Ping Guo, Weizhao Cai     E-mail:  spguo@ynu.edu.cn;wzhcai@uestc.edu.cn

Cite this article: 

Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照) Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure 2025 Chin. Phys. B 34 086102

[1] Anderson P W 1987 Science 235 1196
[2] Guguchia Z, Khasanov R and Luetkens H 2023 npj Quantum Mater. 8 41
[3] Li Q,Wu Y, Fan X, Zhang Y J, Zhu X, Zhu Z, Li Y andWen H H 2022 Phys. Rev. B 106 214501
[4] Pollmann F, Roychowdhury K, Hotta C and Penc K 2014 Phys. Rev. B 90 035118
[5] Jiang Y X, Shao S, Xia W, et al. 2024 Nat. Mater. 23 1214
[6] Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R and Valentí R 2014 Nat. Commun. 5 4261
[7] Bauer B, Keller B P, Trebst S and Ludwig A W W 2019 Phys. Rev. B 99 035155
[8] Anderson P W 1973 Mater. Res. Bull. 8 153
[9] Sachdev S 1992 Phys. Rev. B 45 12377
[10] Elser V 1989 Phys. Rev. Lett. 62 2405
[11] Lecheminant P, Bernu B, Lhuillier C, Pierre L and Sindzingre P 1997 Phys. Rev. B 56 2521
[12] Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Chung J H, Nocera D G and Lee Y S 2007 Phys. Rev. Lett. 98 107204
[13] Harris M J, Bramwell S T, McMorrow D F, Zeiske T and Godfrey KW 1997 Phys. Rev. Lett. 79 2554
[14] Bramwell S T and Gingras M J P 2001 Science 294 1495
[15] Ramirez A P, Hayashi A, Cava R J, Siddharthan R and Shastry B S 1999 Nature 399 333
[16] Chi Y, Xu J, Xue H G, Zhang Y, Chen X, Whangbo M H, Guo S P and Deng S 2019 J. Am. Chem. Soc. 141 9533
[17] Balents L 2010 Nature 464 199
[18] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405
[19] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135
[20] Gao Y, Liu C, Tian C, Zhu C, Huang X and Cui T 2024 Chin. Phys. B 33 126104
[21] Zhang M G, Chen L, Feng L, Tuo H H, Zhang Y, Wei Q and Li P F 2023 Chin. Phys. B 32 086101
[22] Chen J, Lv X, Li S, Dan Y, Huang Y and Cui T 2024 Chin. Phys. B 33 067104
[23] Cai W, He J, Li H, Zhang R, Zhang D, Chung D Y, Bhowmick T, Wolverton C, Kanatzidis M G and Deemyad S 2021 Nat. Commun. 12 1509
[24] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J and Wilson S D 2020 Phys. Rev. Lett. 125 247002
[25] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801
[26] Ortiz B R, Gomes L C, Morey J R,Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407
[27] Jiang Y X, Yin J X, Denner M M, et al. 2021 Nat. Mater. 20 1353
[28] Du F, Luo S, Ortiz B R, Chen Y, Duan W, Zhang D, Lu X, Wilson S D, Song Y and Yuan H 2021 Phys. Rev. B 103 L220504
[29] Liu Y, Liu Z Y, Bao J K, et al. 2024 Nature 632 1032
[30] Link P, Goncharenko I N, Mignot J M, Matsumura T and Suzuki T 1998 Phys. Rev. Lett. 80 173
[31] Loula G D, Dos Reis R D, Haskel D, Garcia F, Souza-Neto N M and Gandra F C G 2012 Phys. Rev. B 85 245128
[32] Matsubayashi K, Munakata K, Katayama N, Isobe M, Ohgushi K, Ueda Y, Kawamura N, Mizumaki M, Ishimatsu N, Hedo M, Umehara I and Uwatoko Y 2011 Phys. Rev. B 84 024502
[33] Xu M, Jose G C, Cheng M, Peng C, Jimenez J L G, Bi W, Li M and Xie W 2025 J. Phys. Chem. A 129 2371
[34] Mao H K, Xu J and Bell P M 1986 J. Geophys. Res. 91 4673
[35] Angel R J, Alvaro M and Gonzalez-Platas J 2014 Z. Kristallogr. Cryst. Mater. 229 405
[36] Heinz D L and Jeanloz R 1984 J. Appl. Phys. 55 885
[37] Prescher C and Prakapenka V B 2015 High Pressure Res. 35 223
[38] Toby B H 2001 J. Appl. Crystallogr. 34 210
[39] Wang P, He D, Xu C, Ren X, Lei L, Wang S, Peng F, Yan X, Liu D, Wang Q, Xiong L and Liu J 2014 J. Appl. Phys. 115 043507
[40] Singh D, Rajagopalan M, Husain M and Bandyopadhyay A K 2000 Solid State Commun. 115 323
[41] Lacomba-Perales R, Errandonea D, Meng Y and Bettinelli M 2010 Phys. Rev. B 81 064113
[42] Turnbull R, Errandonea D, Sans J Á, Cuenca-Gotor V P, Vilaplana R I, Ibáñez J, Popescu C, Szczeszak A, Lis S and Manjón F J 2021 J. Alloys Compd. 866 158962
[43] Turnbull R, Errandonea D, Cuenca-Gotor V P, Sans J Á, Gomis O, Gonzalez A, Rodríguez-Hernandez P, Popescu C, Bettinelli M, Mishra K K and Manjón F J 2021 J. Alloys Compd. 850 156562
[44] Monteseguro V, Barreda-Argüeso J A, Ruiz-Fuertes J, Rosa A D, Meyerheim H L, Irifune T and Rodriguez F 2022 Sci. Rep. 12 1217
[45] Qin T, Wu M, Wang K, Wu Y and Huang H 2024 Chin. Phys. B 33 118101
[1] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[2] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[3] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[4] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[5] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[6] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[7] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[8] High pressure growth of transition-metal monosilicide RhGe single crystals
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽). Chin. Phys. B, 2025, 34(8): 088101.
[9] Pressure-induced metallization and Lifshitz transition in quasi-one-dimensional TiSe3 single crystal
Zhenhai Yu(于振海), Yunguan Ye(叶运观), Pengtao Yang(杨芃焘), Yiming Wang(王弈铭), Liucheng Chen(陈刘城), Chenglin Li(李承霖), Jian Yuan(袁健), Ziyi Liu(刘子儀), Zhiwei Shen(申志伟), Shaojie Wang(王邵杰), Mingtao Li(李明涛), Chaoyang Chu(楚朝阳), Xia Wang(王霞), Jun Li(李俊), Lin Wang(王霖), Wenge Yang(杨文革), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2025, 34(8): 088102.
[10] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[11] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[12] Pressure dependent excited state dynamics behavior in CzCNDSB
Guang-Jing Hou(侯广静), Ting-Ting Wang(王亭亭), Cun-Fang Feng(冯存方), Hong-Yu Tu(屠宏宇), Yu Zhang(张宇), Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), Ping Lu(路萍), Tian Cui(崔田), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2025, 34(8): 087801.
[13] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[14] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
[15] Magnetotransport properties of two-dimensional tellurium at high pressure
Huiyuan Guo(郭慧圆), Jialiang Jiang(姜家梁), Boyu Zou(邹博宇), Jie Cui(崔杰), Qinglin Wang(王庆林), Haiwa Zhang(张海娃), Guangyu Wang(王光宇), Guozhao Zhang(张国召), Kai Wang(王凯), Yinwei Li(李印威), and Cailong Liu(刘才龙). Chin. Phys. B, 2025, 34(8): 087301.
No Suggested Reading articles found!