|
Special Issue:
SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications
|
| SPECIAL TOPIC — Artificial intelligence and smart materials innovation: From fundamentals to applications |
Prev
Next
|
|
|
Enhanced photothermal performance of dielectric silicon attached with multiple plasmonic gold nanoparticles |
| Xiangyu Tong(佟翔宇)1, Ning Chen(陈宁)2, Xiaowen Chen(陈晓文)1, Bin Zhang(张斌)1,†, and Xiaohu Wu(吴小虎)3,‡ |
1 College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China; 2 Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250100, China; 3 Thermal Science Research Center, Shandong Institute of Advanced Technology, Jinan 250100, China |
|
|
|
|
Abstract The photothermal properties of dielectric materials at the nanoscale have garnered significant attention, especially in fields such as optical heating, photothermal therapy, and solar utilization. However, although dielectric materials can concentrate and manipulate light at the nanoscale, they cannot provide sufficient photothermal efficiency in a direct absorption solar collector. Combining plasmonic metal nanoparticles with dielectric nanostructures enables the fabrication of hybrid nanomaterials with excellent photothermal performance. This study presents a novel approach involving uniformly adhering plasmonic gold nanoparticles onto dielectric silicon nanoparticles to enhance the absorption peak, leading to a substantial enhancement of photothermal conversion efficiency. The results demonstrate that the absorption peak of silicon-gold hybrid nanoparticles exceeds that of pure silicon nanoparticles, achieving a 38% increase in photothermal conversion efficiency within a 10 ppm aqueous solution under a 20 mm optical path. The coupling of localized surface plasmon resonance and quadrupole resonance effects enhances the electric field, causing a temperature rise in both the hybrid nanoparticles and the surrounding aqueous solution. Nanostructural modulation studies reveal that the photothermal efficiency of silicon-gold hybrid nanoparticles is positively correlated with gold nanoparticle size but negatively correlated with silicon nanoparticle size. Combining multiple plasmonic nanoparticles with dielectric materials can effectively enhance photothermal performance and hold great application potential in direct absorption solar collectors and solar thermal utilization.
|
Received: 07 April 2025
Revised: 13 May 2025
Accepted manuscript online: 15 May 2025
|
|
PACS:
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
| |
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
| |
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
| |
88.40.-j
|
(Solar energy)
|
|
| Fund: This work is supported by the National Natural Science Foundation of China (Grant No. 52106099) and the Taishan Scholars Program of Shandong. |
Corresponding Authors:
Bin Zhang, Xiaohu Wu
E-mail: zb-sh@163.com;wuxiaohu@pku.edu.cn
|
Cite this article:
Xiangyu Tong(佟翔宇), Ning Chen(陈宁), Xiaowen Chen(陈晓文), Bin Zhang(张斌), and Xiaohu Wu(吴小虎) Enhanced photothermal performance of dielectric silicon attached with multiple plasmonic gold nanoparticles 2025 Chin. Phys. B 34 087803
|
[1] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S and Luk’yanchuk B 2016 Science 354 2472 [2] Jahani S and Jacob Z 2016 Nat. Nanotechnol. 11 23 [3] Zograf G P, Petrov M I, Makarov S V and Kivshar Y S 2021 Adv. Opt. Photon. 13 643 [4] Länk N O, Johansson P and Käll M 2020 ACS Photonics 7 2405 [5] Li Y Q, Yang X Y, Yang Y J, Wang B B, Li X Y and Salas-Montiel R 2019 Opt. Express 27 30971 [6] Jaque D, Maestro L M, Rosal B D, Gonzalez P H, Benayas A and Plaza J L 2014 Nanoscale 6 9494 [7] Tran V A, Lee S W, Phan T T T, Don T N, Vien V, Thanh N C, Ho N N, Doan V D and Le V T 2024 Mater. Today Chem. 40 102272 [8] Shridharan T S, Sivanantham A, Lee J H, Hong S Y, Jeong Y J, Shin S S and Cho I S 2024 Chem. Eng. J. 486 150247 [9] Trinh P V, Anh N N, Cham N T, Tu L T, Hao N V, Thang B H, Chuc N V, Thanh C T, Minh P N and Fukata N 2022 RSC Adv. 12 10514 [10] Li H, Yang S, Hu J, Zhang Z, Tang P, Jiang Y, Tang L and Zou B 2022 Mater. Sci. Semicond. Process. 146 106661 [11] Bubnov A A, Syui A V, Popov A A, Tikhonovskii G V, Pokryshkin N S and Timoshenko V Y 2023 Phys. At. Nucl. 86 2743 [12] Vikram M P, Nishida K, Li C H, Riabov D, Pashina O and Tang Y L 2024 Nanophotonics 13 21928606 [13] Chen T S, Gao J Y, Wang X X, Chen Y Z, Yang H and Qi Y P 2025 Phys. Scr. 100 015533 [14] Rao X J, Zhu H R, Wang X X, Chen Y Z, Qi Y P and Yang H 2025 J. Opt. Soc. Am. B 42 431 [15] Zograf G P, Petrov M I, Zuev D A, Dmitriev P A, Milichko V A, Makarov S V and Belov P A 2017 Nano Lett. 17 2945 [16] Amjad M, Jin H, Du X and Wen D 2018 Sol. Energy Mater. Sol. Cells 182 255 [17] Gu P, Yang H J, Li D Q, Zhu H Q, Chen J, Zhang Z X, Yan Z D, Tang C J, Liu F X, Chen Z and Zhang Z X 2024 J. Phys. Chem. C 128 6431 [18] Zhu X, Zhang J Y, Yang C H, Li Y and Chen Y Y 2023 Chin. Phys. Lett. 40 057801 [19] Yan G D, Zhang Z H, Guo H, Chen J P, Jiang Q S, Cui Q N, Shi Z L and Xu C X 2023 Chin. Phys. B 32 067302 [20] Li X M, Liu F M, Li Z G, Zhu H Y,Wang F and Zhong X L 2023 Chin. Phys. B 32 114205 [21] Chen X W, Qin C Y, Yang L, Li X K, Wu X H and Zhang B 2024 Int. J. Therm. Sci. 200 108980 [22] Zou Y, Qin C Y, Zhai H, Sun C L, Zhang B and Wu X H 2022 Int. J. Therm. Sci. 182 107824 [23] Landfester K 2009 Angew. Chem. Int. Ed. 48 4488 [24] Vallejo J P, Prado J I and Lugo L 2022 Appl. Therm. Eng. 203 117926 [25] Sathish T, Giri J, Saravanan R, Ubaidullah M, Shangdiar S, Iikela S, Sithole T and Amesho K T T 2024 Appl. Therm. Eng. 252 123692 [26] Zhou K, Jee S W, Guo Z, Liu S and Lee J H 2011 Appl. Opt. 50 63 [27] GeW, Zhang X R, Liu M, Lei ZWand Lu Y L 2015 Mater. Res. Innov. 18 701 [28] Gerasimova E N, Uvarov E, Yaroshenko V V, Epifanovskaya O, Shakirova A, Logunov L S, Vlasova O, Parodi A, Zamyatnin A A Jr., Timin A S, Makarov S V and ZyuzinMV 2023 ACS Appl. Nano Mater. 6 18848 [29] Gurbatov S O, Puzikov V, Cherepakhin A, Mitsai E, Tarasenka N, Shevlyagin A, Sergeev A, Kulinich S A and Kuchmizhak A A 2022 Opt. Laser Technol. 147 107666 [30] Cortie M B and McDonagh A M 2011 Chem. Rev. 111 3713 [31] Chehaidar A 2023 Int. J. Therm. Sci. 188 108227 [32] Yu X, Fan S L, Zhu B, El-Hout S I, Zhang J and Chen C L 2025 Green Energy Environ. 10 1377 [33] Gupta A, Ghosh S, Thakur M K, Zhou J, Ostrikov K K, Jin D and Chattopadhyay S 2021 Prog. Mater. Sci. 121 100838 [34] Sun C L, Zou Y, Qin C Y, Chen M J, Li X K, Zhang B and Wu X H 2022 Renew. Energy 189 402 [35] Yang Q H, Qin C Y, Chen N, Liu H T, Zhang B and Wu X H 2024 Int. J. Therm. Sci. 204 109175 [36] Wu Y X, He Q, Zhang H, Meng X L, Min Y Y, Wang Y, Wu X H, Zhang P, Ma Y Y and Zheng Y Q 2025 J. Mater. Chem. C 13 5370 [37] Green M A 2008 Sol. Energy Mater. Sol. Cells 92 1305 [38] Rakić A D, Djurišic A B, Elazar J M and Majewski M L 1998 Appl. Opt. 37 5271 [39] Farooq S, Rativa D, Said Z and de Araujo R E 2023 Appl. Therm. Eng. 218 119212 [40] Yang Q H, Qin C Y, Zou Y, Liu H T, Zhang B and Wu X H 2023 Int. J. Therm. Sci. 191 108387 [41] Wang X J, Wang Y Q, Yang X X and Cao Y 2019 Sol. Energy 181 439 [42] Zhao J, Pinchuk A O, Mcmahon J M, Li S Z, Ausman L K, Atkinson A L and Schatz G C 2008 Acc. Chem. Res. 4 1710 [43] Sun C L, Qin C Y, Zhai H, Zhang B and Wu X H 2021 Nanomaterials 11 2722 [44] Chen M J, Wang X, Hu Y and He Y 2020 J. Quant. Spectrosc. Radiat. Transf. 250 107029 [45] Khademalrasool M and Talebzadeh M D 2021 Adv. Powder Technol. 32 2916 [46] Zeng J and Xuan Y 2021 J. Quant. Spectrosc. Radiat. Transf. 269 107692 [47] ChenMJ, He Y R, Huang J and Zhu J Q 2017 Int. J. Heat Mass Transf. 108 1894 [48] Zou Y, Yang L, Li X K, Qin C Y, Zhang B and Wu X H 2024 Heat Transf. Eng. 1 12 [49] Kucherik A, Kutrovskaya S, Osipov A, Gerke M, Chestnov I, Arakelian S, Shalin A S, Evlyukhin A B and Kavokin A V 2019 Sci. Rep. 9 338 [50] Wang Q R, Yang L, Zhao N, Xu G Y, Song J Z, Jin X, Li X and Liu S H 2023 Appl. Therm. Eng. 219 119476 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|