CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod |
Yang Yu(于洋)1,2, Ting-Hui Xiao(肖廷辉)1, Zhi-Yuan Li(李志远)1,3 |
1 Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China |
|
|
Abstract Localized surface plasmon resonance (LSPR) has demonstrated its promising capability for biochemical sensing and surface-enhanced spectroscopy applications. However, harnessing LSPR for remote sensing and spectroscopy applications remains a challenge due to the difficulty in realizing a configuration compatible with the current optical communication system. Here, we propose and theoretically investigate a hybrid plasmonic-photonic device comprised of a single gold nanorod and an optical fiber-based one-dimensional photonic crystal microcavity, which can be integrated with the optical communication system without insertion loss. The line width of the LSPR, as a crucial indicator that determines the performances for various applications, is narrowed by the cavity-plasmon coupling in our device. Our device provides a promising alternative to exploit the LSPR for high-performance remote sensing and spectroscopy applications.
|
Received: 10 August 2017
Revised: 26 September 2017
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
42.82.Fv
|
(Hybrid systems)
|
|
52.65.Ww
|
(Hybrid methods)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632704) and the National Natural Science Foundation of China (Grant No. 11434017). |
Corresponding Authors:
Zhi-Yuan Li
E-mail: phzyli@scut.edu.cn
|
Cite this article:
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远) Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod 2018 Chin. Phys. B 27 017301
|
[1] |
Eustis S and El-Sayed M A 2006 Chem. Soc. Rev. 35 209
|
[2] |
Willets K A and Van Duyne 2007 Rev. Phys. Chem. 58 267
|
[3] |
Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley) p. 3
|
[4] |
Wang P, Wang Y, Yang Z, Guo X, Lin X, Yu X C, Xiao Y F, Fang W, Zhang L, Lu G, Gong Q and Tong L 2015 Nano Lett. 15 7581
|
[5] |
Kreibig U and Vollmer M 1995 Optical Properties of Metal Clusters (Berlin: Springer) pp. 1-12
|
[6] |
Sönichsen C, Franzl T, Wilk T, von Plessen G and Feldmann J 2002 Phys. Rev. Lett. 88 077402
|
[7] |
Fang Z and Zhu X 2013 Adv. Mater. 25 3840
|
[8] |
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J and Van Duyne 2008 Nat. Mater. 7 442
|
[9] |
Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
|
[10] |
Yonzon C R, Stuart D A, Zhang X, McFarland A D, Haynes C L and Van Duyne R P 2005 Talanta 67 438
|
[11] |
Haes A J, Chang L, Klein W L and Van Duyne R P 2005 J. Am. Chem. Soc. 127 2264
|
[12] |
Dahlin A B, Tegenfeldt J O and Hook F 2006 Anal. Chem. 78 4416
|
[13] |
McFarland A D and Van Duyne R P 2003 Nano Lett. 3 1057
|
[14] |
Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar T A and Feldmann J 2003 Nano Lett. 3 935
|
[15] |
Elghanian R, Storhoff J J, Mucic R C, Letsinger R L and Mirkin C A 1997 Science 277 1078
|
[16] |
Mühlschlegel P, Eisler H J, Martin O J F, Hecht B and Pohl D W 2005 Science 308 1607
|
[17] |
Jeanmaire D L and Van Duyne R P 1997 J. Electroanal. Chem.Interface Electrochem. 84 1
|
[18] |
Haynes C L, Yonzon C R, Zhang X and Van Duyne R P 2005 J. Raman Spectrosc. 36 471
|
[19] |
Dieringer J A, McFarland A D, Shah N C, Stuart D A, Whitney A V, Yonzon C R, Young M A, Zhang X and Van Duyne R P 2006 Faraday Discuss. 132 9
|
[20] |
Haller K L, Bumm L A, Altkorn R I, Zeman E J, Schatz G C and Vanduyne R P 1989 J. Chem. Phys. 90 1237
|
[21] |
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
|
[22] |
Zhou W, Dridi M, Suh J. Y, Kim C H, Co D T, Wasielewski M R, Schatz G C and Odom T W 2013 Nat. Nanotechnol. 8 506
|
[23] |
Fang N, Sun C, Luo Q and Zhang X 2004 Nano Lett. 4 1085
|
[24] |
Kik P G, Maier S A and Atwater H A 2004 Proc. SPIE 5347 215
|
[25] |
Sundaramurthy A, Schuck P J, Conley N R, Fromm D P, Kino G S and Moerner W E 2006 Nano Lett. 6 355
|
[26] |
Chanda D, Shigeta K, Truong T, Lui E, Mihi A, Schulmerich M, Braun P V, Bhargava R and John A 2011 Nat. Commun. 2 479
|
[27] |
Xiao T, Cheng Z and Goda K 2017 Nanotechnology 28 245201
|
[28] |
Li Z, Li Y, Wang X, Yu Y, Tay B, Liu Z and Fang Z 2017 ACS Nano 11 1165
|
[29] |
Yu Y, Ji Z, Zu S, Du B, Kang Y, Li Z, Zhou Z, Shi K and Fang Z 2016 Adv. Funct. Mater. 26 6394
|
[30] |
Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
|
[31] |
Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P and Halas N J 2010 Nano Lett. 10 3184
|
[32] |
Yanik A A, Cetin A E, Huang M, Artar A, Mousavi S H, Khanikaev A, Connor J H, Shvets G and Altug H 2011 Proc. Natl. Acad. Sci. USA 108 11784
|
[33] |
Linden S, Kuhl J and Giessen H 2001 Phys. Rev. Lett. 86 4688
|
[34] |
Christ A, Tikhodeev S G, Gippius N A, Kuhl J and Giessen H 2003 Phys. Rev. Lett. 91 183901
|
[35] |
Ameling R, Langguth L, Hentschel M, Mesch M, Braun P V and Giessen H 2010 Appl. Phys. Lett. 97 253116
|
[36] |
Kekatpure R D, Barnard E S, Cai W S and Brongersma M L 2010 Phys. Rev. Lett. 104 243902
|
[37] |
Yu Y, W Ding, Li Z Y and Andrews S 2014 Opt. Express 22 2528
|
[38] |
Yu Y, Sun Y Z, Andrews S, Li Z Y and Ding W 2015 J.Phys.: Conf. Ser. 680 012029
|
[39] |
Yu Y, Xiao T H, Guo H L and Li Z Y 2017 Photonic Research 5 143
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|