|
Special Issue:
SPECIAL TOPIC — Structures and properties of materials under high pressure
|
| SPECIAL TOPIC — Structures and properties of materials under high pressure |
Prev
Next
|
|
|
High pressure growth of transition-metal monosilicide RhGe single crystals |
| Xiangjiang Dong(董祥江)1,†, Bowen Zhang(张博文)1,†, Xubin Ye(叶旭斌)2, Peng Wei(魏鹏)1, Lei Lian(廉磊)1, Ning Sun(孙宁)1, Youwen Long(龙有文)2, Shangjie Tian(田尚杰)3, Shouguo Wang(王守国)3, Hechang Lei(雷和畅)4,5,‡, and Runze Yu(于润泽)1,§ |
1 Center for High-Pressure Science and Technology Advanced Research, Beijing 100093, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China; 4 School of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & MicroNano Devices, Renmin University of China, Beijing 100872, China; 5 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China |
|
|
|
|
Abstract Transition-metal monosilicide RhGe has been reported to exhibit weak itinerant ferromagnetism, superconductivity, and topological properties. In this study, we report the high-pressure growth of high-quality RhGe single crystals up to millimeter size using a flux method. Transport measurements reveal metallic behavior in RhGe from 2 K to 300 K with Fermi liquid behavior at low temperatures. However, no superconductivity was observed with variations in the Ge composition. Magnetic characterizations indicate that RhGe exhibits paramagnetic behavior between 2 K and 300 K. The high-quality and large-size RhGe single crystals pave the way for further investigation of their topological properties using spectroscopic techniques.
|
Received: 02 March 2025
Revised: 07 May 2025
Accepted manuscript online: 13 May 2025
|
|
PACS:
|
81.10.-h
|
(Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)
|
| |
07.35.+k
|
(High-pressure apparatus; shock tubes; diamond anvil cells)
|
|
| Fund: Project supported by the National Key Research & Development Program of China (Grant Nos. 2023YFA1406000, 2022YFA1403800, 2021YFA1400300, and 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. 12474002, 22171283, 12425403, 12261131499, 12304268, and 12274459), and the China Postdoctoral Science Foundation (Grant Nos. 2023M730011 and 2023M743741). |
Corresponding Authors:
Hechang Lei, Runze Yu
E-mail: hlei@ruc.edu.cn;runze.yu@hpstar.ac.cn
|
Cite this article:
Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽) High pressure growth of transition-metal monosilicide RhGe single crystals 2025 Chin. Phys. B 34 088101
|
[1] Ishikawa Y and Arai M 1984 J. Phys. Soc. Jpn. 53 2726 [2] Pshenay-Severin D A and Burkov A T 2019 Materials 12 2710 [3] Neubauer A, Peiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Boni P 2009 Phys. Rev. Lett. 102 186602 [4] Lee M, KangW, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601 [5] Ritz R, Halder M, Franz C, Bauer A, Wagner M, Bamler R, Rosch A and Peiderer C 2013 Phys. Rev. B 87 134424 [6] Thompson J, Fisk Z and Lonzarich G 1990 Physica B 161 317 [7] Ishikawa Y, Tajima K, Bloch D and Roth M 1976 Solid State Commun. 19 525 [8] Thessieu C, Flouquet J, Lapertot G, Stepanov A and Jaccard D 1995 Solid State Commun. 95 707 [9] Pfleiderer C, McMullan G J, Julian S R and Lonzarich G G 1997 Phys. Rev. B 55 8330 [10] Peiderer C, Reznik D, Pintschovius L, Lohneysen H V, Garst M and Rosch A 2004 Nature 427 227 [11] Muhlbauer S, Binz B, Jonietz F, Peiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science 323 915 [12] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901 [13] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 558 [14] Tang P, Zhou Q and Zhang S C 2017 Phys. Rev. Lett. 119 206402 [15] Pshenay-Severin D A, Ivanov Y V, Burkov A A and Burkov A T 2018 J. Phys. Condens. Matter 30 135501 [16] Takane D, Wang Z, Souma S, Nakayama K, Nakamura T, Oinuma H, Nakata Y, Iwasawa H, Cacho C and Kim T, et al. 2019 Phys. Rev. Lett. 122 076402 [17] Rao Z, Li H, Zhang T, Tian S, Li C, Fu B, Tang C, Wang L, Li Z, Fan W, Bian G, Alidoust N, Chang T R, Xu S Y, Jia S, Bansil A, Hasan M Z and Jia S 2019 Nature 567 496 [18] Sanchez D S, Belopolski I, Cochran T A, et al. 2019 Nature 567 500 [19] Fedorov M I and Zaitsev V K 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) Chapter 27 [20] Tsvyashchenko A V, Sidorov V A, Petrova A E, Fomicheva L N, Zibrov I P and Dmitrienko V E 2016 J. Alloys Compd. 686 431 [21] Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Nöel H, Sigrist M and Rogl P 2004 Phys. Rev. Lett. 92 027003 [22] Toby B H 2001 J. Appl. Crystallogr. 34 210 [23] Hirai D, Ali M N and Cava R J 2013 J. Phys. Soc. Jpn. 82 124701 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|