Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 088101    DOI: 10.1088/1674-1056/add7ab
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

High pressure growth of transition-metal monosilicide RhGe single crystals

Xiangjiang Dong(董祥江)1,†, Bowen Zhang(张博文)1,†, Xubin Ye(叶旭斌)2, Peng Wei(魏鹏)1, Lei Lian(廉磊)1, Ning Sun(孙宁)1, Youwen Long(龙有文)2, Shangjie Tian(田尚杰)3, Shouguo Wang(王守国)3, Hechang Lei(雷和畅)4,5,‡, and Runze Yu(于润泽)1,§
1 Center for High-Pressure Science and Technology Advanced Research, Beijing 100093, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Anhui Provincial Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China;
4 School of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & MicroNano Devices, Renmin University of China, Beijing 100872, China;
5 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China
Abstract  Transition-metal monosilicide RhGe has been reported to exhibit weak itinerant ferromagnetism, superconductivity, and topological properties. In this study, we report the high-pressure growth of high-quality RhGe single crystals up to millimeter size using a flux method. Transport measurements reveal metallic behavior in RhGe from 2 K to 300 K with Fermi liquid behavior at low temperatures. However, no superconductivity was observed with variations in the Ge composition. Magnetic characterizations indicate that RhGe exhibits paramagnetic behavior between 2 K and 300 K. The high-quality and large-size RhGe single crystals pave the way for further investigation of their topological properties using spectroscopic techniques.
Keywords:  transition metals monosilicide      high pressure      single crystal growth  
Received:  02 March 2025      Revised:  07 May 2025      Accepted manuscript online:  13 May 2025
PACS:  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the National Key Research & Development Program of China (Grant Nos. 2023YFA1406000, 2022YFA1403800, 2021YFA1400300, and 2023YFA1406500), the National Natural Science Foundation of China (Grant Nos. 12474002, 22171283, 12425403, 12261131499, 12304268, and 12274459), and the China Postdoctoral Science Foundation (Grant Nos. 2023M730011 and 2023M743741).
Corresponding Authors:  Hechang Lei, Runze Yu     E-mail:  hlei@ruc.edu.cn;runze.yu@hpstar.ac.cn

Cite this article: 

Xiangjiang Dong(董祥江), Bowen Zhang(张博文), Xubin Ye(叶旭斌), Peng Wei(魏鹏), Lei Lian(廉磊), Ning Sun(孙宁), Youwen Long(龙有文), Shangjie Tian(田尚杰), Shouguo Wang(王守国), Hechang Lei(雷和畅), and Runze Yu(于润泽) High pressure growth of transition-metal monosilicide RhGe single crystals 2025 Chin. Phys. B 34 088101

[1] Ishikawa Y and Arai M 1984 J. Phys. Soc. Jpn. 53 2726
[2] Pshenay-Severin D A and Burkov A T 2019 Materials 12 2710
[3] Neubauer A, Peiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G and Boni P 2009 Phys. Rev. Lett. 102 186602
[4] Lee M, KangW, Onose Y, Tokura Y and Ong N P 2009 Phys. Rev. Lett. 102 186601
[5] Ritz R, Halder M, Franz C, Bauer A, Wagner M, Bamler R, Rosch A and Peiderer C 2013 Phys. Rev. B 87 134424
[6] Thompson J, Fisk Z and Lonzarich G 1990 Physica B 161 317
[7] Ishikawa Y, Tajima K, Bloch D and Roth M 1976 Solid State Commun. 19 525
[8] Thessieu C, Flouquet J, Lapertot G, Stepanov A and Jaccard D 1995 Solid State Commun. 95 707
[9] Pfleiderer C, McMullan G J, Julian S R and Lonzarich G G 1997 Phys. Rev. B 55 8330
[10] Peiderer C, Reznik D, Pintschovius L, Lohneysen H V, Garst M and Rosch A 2004 Nature 427 227
[11] Muhlbauer S, Binz B, Jonietz F, Peiderer C, Rosch A, Neubauer A, Georgii R and Boni P 2009 Science 323 915
[12] Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N and Tokura Y 2010 Nature 465 901
[13] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 558
[14] Tang P, Zhou Q and Zhang S C 2017 Phys. Rev. Lett. 119 206402
[15] Pshenay-Severin D A, Ivanov Y V, Burkov A A and Burkov A T 2018 J. Phys. Condens. Matter 30 135501
[16] Takane D, Wang Z, Souma S, Nakayama K, Nakamura T, Oinuma H, Nakata Y, Iwasawa H, Cacho C and Kim T, et al. 2019 Phys. Rev. Lett. 122 076402
[17] Rao Z, Li H, Zhang T, Tian S, Li C, Fu B, Tang C, Wang L, Li Z, Fan W, Bian G, Alidoust N, Chang T R, Xu S Y, Jia S, Bansil A, Hasan M Z and Jia S 2019 Nature 567 496
[18] Sanchez D S, Belopolski I, Cochran T A, et al. 2019 Nature 567 500
[19] Fedorov M I and Zaitsev V K 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) Chapter 27
[20] Tsvyashchenko A V, Sidorov V A, Petrova A E, Fomicheva L N, Zibrov I P and Dmitrienko V E 2016 J. Alloys Compd. 686 431
[21] Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Nöel H, Sigrist M and Rogl P 2004 Phys. Rev. Lett. 92 027003
[22] Toby B H 2001 J. Appl. Crystallogr. 34 210
[23] Hirai D, Ali M N and Cava R J 2013 J. Phys. Soc. Jpn. 82 124701
[1] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[2] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
[3] Magnetotransport properties of two-dimensional tellurium at high pressure
Huiyuan Guo(郭慧圆), Jialiang Jiang(姜家梁), Boyu Zou(邹博宇), Jie Cui(崔杰), Qinglin Wang(王庆林), Haiwa Zhang(张海娃), Guangyu Wang(王光宇), Guozhao Zhang(张国召), Kai Wang(王凯), Yinwei Li(李印威), and Cailong Liu(刘才龙). Chin. Phys. B, 2025, 34(8): 087301.
[4] High pressure synthesis, crystal structure and electronic properties of Ba3Hf(Se1-xTex)5 (x = 0-1)
Zelong Wang(王泽龙), Guodong Wang(王国东), Wenmin Li(李文敏), Runteng Chen(陈润滕), Lei Duan(段磊), Jianfa Zhao(赵建发), Zheng Deng(邓正), Jianfeng Zhang(张建丰), Tingjiang Yan(颜廷江), Jun Zhang(张俊), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086101.
[5] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[6] Structural evolution and bandgap modification of a robust mixed-valence compound Eu9MgS2B20O41 under pressure
Boyang Fu(符博洋), Wenfeng Zhou(周文风), Fuyang Liu(刘扶阳), Luhong Wang(王鲁红), Haozhe Liu(刘浩哲), Sheng-Ping Guo(郭胜平), and Weizhao Cai(蔡伟照). Chin. Phys. B, 2025, 34(8): 086102.
[7] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[8] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[9] Synergistic improvements in mechanical and thermal performance of TiB2 solid-solution-based composites
Zhuang Li(李壮), Cun You(由存), Zhihui Li(李志慧), Xuepeng Li(李雪鹏), Guiqian Sun(孙贵乾), Xinglin Wang(王星淋), Qi Jia(贾琪), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086105.
[10] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[11] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[12] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[13] High thermoelectric performance of SnS under high pressure and high temperature
Yuqi Gao(高语崎), Xinglin Wang(王星淋), Cun You(由存), Dianzhen Wang(王殿振), Nan Gao(高楠), Qi Jia(贾琪), Zhihui Li(李志慧), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 087201.
[14] Pressure dependent excited state dynamics behavior in CzCNDSB
Guang-Jing Hou(侯广静), Ting-Ting Wang(王亭亭), Cun-Fang Feng(冯存方), Hong-Yu Tu(屠宏宇), Yu Zhang(张宇), Fang-Fei Li(李芳菲), Ying-Hui Wang(王英惠), Ping Lu(路萍), Tian Cui(崔田), and Ling-Yun Pan(潘凌云). Chin. Phys. B, 2025, 34(8): 087801.
[15] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
No Suggested Reading articles found!