Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087802    DOI: 10.1088/1674-1056/adce93
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Piezo-phototronic effect on intersubband optical absorption in ZnO/MgZnO quantum wells

Yuchang Liu(刘羽畅)1,†, Jiuzhou Chen(陈九州)2,†, Yonglong Yang(杨永龙)2,†, Xiaolong Pan(潘小龙)2, Xin Xue(薛鑫)3, Minjiang Dan(但敏江)2,‡, Zhengwei Xiong(熊政伟)2,§, and Zhipeng Gao(高志鹏)2,4,¶
1 School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China;
3 Department of Physics, Lvliang University, Lvliang 033000, China;
4 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  Intersubband transition in ZnO/MgZnO quantum well has been exploited for infrared and terahertz optoelectronic applications due to its large band offset and fascinating material properties. Here, we theoretically demonstrate piezo-phototronic effect as another way to control the intersubband absorption wavelength through quantum-confined Stark effect. The intersubband optical absorption properties under different stresses are obtained by solving the eight-band $k\cdot p$ Hamiltonian and coupled Schrödinger-Poisson equations self-consistently. By combining stress control and quantum well structure, the absorption wavelength can show infrared blueshift or redshift phenomena in a wide range. This work can provide an effective avenue to control and utilize quantum-confined Stark effect in intersubband infrared absorption and promote the relative potential optoelectronic devices.
Keywords:  ZnO/MgZnO quantum well      intersubband transition      piezo-phototronic effect      optical absorption  
Received:  09 January 2025      Revised:  13 April 2025      Accepted manuscript online:  21 April 2025
PACS:  78.67.De (Quantum wells)  
  78.20.hb (Piezo-optical, elasto-optical, acousto-optical, and photoelastic effects)  
  71.35.Cc (Intrinsic properties of excitons; optical absorption spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2430204, U23A20567, and U2230119) and the Outstanding Youth Science and Technology Talents Program of Sichuan Province, China (Grant No. 22JCQN0005).
Corresponding Authors:  Minjiang Dan, Zhengwei Xiong, Zhipeng Gao     E-mail:  minjiang.dan@swust.edu.cn;zw-xiong@swust.edu.cn;z.p.gao@foxmail.com

Cite this article: 

Yuchang Liu(刘羽畅), Jiuzhou Chen(陈九州), Yonglong Yang(杨永龙), Xiaolong Pan(潘小龙), Xin Xue(薛鑫), Minjiang Dan(但敏江), Zhengwei Xiong(熊政伟), and Zhipeng Gao(高志鹏) Piezo-phototronic effect on intersubband optical absorption in ZnO/MgZnO quantum wells 2025 Chin. Phys. B 34 087802

[1] Sun H D, Makino T, Segawa Y, et al. 2002 J. Appl. Phys. 91 1993
[2] Ryu Y, Lee T S, Lubguban J A, et al. 2006 Appl. Phys. Lett. 88 241108
[3] Willander M, Nur O, Zhao Q X, et al. 2009 Nanotechnology 20 332001
[4] Van Vugt L K, Ruhle S, Ravindran P, et al. 2006 Phys. Rev. Lett. 97 147401
[5] Teisseyre H, Jarosz D, Marona L, et al. 2020 Phys. Status Solidi (a) 218 202000344
[6] Ohtomo A, Kawasaki M, Koida T, et al 1998 Appl. Phys. Lett. 72 2466
[7] YangW, Vispute R D, Choopun S, et al. 2001 Appl. Phys. Lett. 78 2787
[8] Li Z, Wang P, He J, et al. 2017 Superlattices and Microstructures 111 852
[9] Makino T, Segawa Y, Kawasaki M, et al. 2001 Appl. Phys. Lett. 78 1237
[10] Ohtani K, Belmoubarik M and Ohno H 2009 J. Crystal Growth 311 2176
[11] Orphal L, Kalusniak S, Benson O, et al. 2017 AIP Adv. 7 115309
[12] Xia C, Zhang H, An J, et al. 2014 Phys. Lett. A 378 2251
[13] Allen M W, Miller P, Reeves R J, et al. 2007 Appl. Phys. Lett. 90 062104
[14] Davis J A, Dao L V, Wen X, et al. 2008 Nanotechnology 19 055205
[15] Belmoubarik M and El Moutaouakil A 2023 J. Alloys Compd. 941 168960
[16] Thongnum A, Sa-Yakanit V and Pinsook U 2011 J. Phys. D: Appl. Phys. 44 325109
[17] Yano M, Hashimoto K and Fujimoto K, et al. 2007 J. Crystal Growth 301–302 353
[18] Bretagnon T, Lefebvre P, Guillet T, et al. 2007 Appl. Phys. Lett. 90 201912
[19] Morhain C, Bretagnon T, Lefebvre P, et al. 2005 Phys. Rev. B 72 241305
[20] Stölzel M, Kupper J, Brandt M, et al. 2012 J. Appl. Phys. 111 063701
[21] Park S H and Ahn D 2005 Appl. Phys. Lett. 87 253509
[22] Zhu L and Wang Z L 2019 J. Phys. D: Appl. Phys. 52 343001
[23] Dai X, Hua Q, Sha W, et al. 2022 J. Appl. Phys. 131 010903
[24] Dan M, Hu G, Nie J, et al. 2021 Small 17 e2008106
[25] Huang X, Du C, Zhou Y, et al. 2016 ACS Nano 10 5145
[26] Funato M and Kawakami Y 2008 J. Appl. Phys. 103 093501
[27] Belmoubarik M, Ohtani K and Ohno H 2008 Appl. Phys. Lett. 92 191906
[28] Matsui H, Hasuike N, Harima H, et al. 2008 J. Appl. Phys. 104 094309
[29] Cingolani R, Botchkarev A, Tang H, et al. 2000 Phys. Rev. B 61 2711
[30] Wan S P, Xia J B and Chang K 2001 J. Appl. Phys. 90 6210
[31] Kaminska A, Koronski K, Strak P, et al. 2020 J. Appl. Phys. 128 050901
[32] Teisseyre H, Kaminska A, Birner S, et al. 2016 J. Appl. Phys. 119 215702
[33] Grandjean N, Damilano B, Dalmasso S, et al. 1999 J. Appl. Phys. 86 3714
[34] Chuang S 1996 IEEE J. Quantum Electron. 32 1791
[35] Ridley B K, Schaff W J and Eastman L F 2003 J. Appl. Phys. 94 3972
[36] Saha S and Kumar J 2016 J. Comput. Electron. 15 1531
[37] Hedin L and Lundqvist B I 1971 J. Phys. C: Solid State Phys. 4 2064
[38] Chuang S L and Chang C S 1996 Phys. Rev. B 54 2491
[39] Fan W J, Abiyasa A P, Tan S T, et al. 2006 J. Crystal Growth 287 28
[40] Winkelnkemper M, Schliwa A and Bimberg D 2006 Phys. Rev. B 74 155322
[41] Sacconi F, Di Carlo A, Lugli P, et al. 2001 IEEE Trans. Electron Dev. 48 450
[42] Chenini L, Aissat A and Vilcot J P 2019 Superlattices and Microstructures 129 115
[43] Ashrafi A 2010 J. Appl. Phys. 107 123527
[44] Kobiakov I B 1980 Solid State Commun. 35 305
[45] Hu Y, Klein B D, Su Y, et al. 2013 Nano Lett. 13 5026
[46] He J, Wang P, Chen H, et al. 2016 Appl. Phys. Express 10 011101
[47] Moudou L H, Al-Hattab M, Rahmani K, et al. 2024 J. Luminescence 275 120727
[48] Kuo Y H, Lee Y K, Ge Y, et al. 2005 Nature 437 1334
[49] Robinson J W, Rice J H, Lee K H, et al. 2005 Appl. Phys. Lett. 86 213103
[50] Gruber T, Kirchner C, Kling R, et al. 2004 Appl. Phys. Lett. 84 5359
[51] Liu N, Hu G, Dan M, et al. 2019 Nano Energy 65 104091
[52] Meng B, Tamayo-Arriola J, Le Biavan N, et al. 2019 Phys. Rev. Appl. 12 054007
[53] Liu X Y, Holmström P, Jänes P, et al. 2007 Phys. Status Solidi (b) 244 2892
[1] Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2023, 32(5): 057303.
[2] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[3] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[4] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[5] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[6] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[7] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[8] Vertical profile of aerosol extinction based on the measurement of O4 of multi-elevation angles with MAX-DOAS
Fusheng Mou(牟福生), Jing Luo(雒静), Suwen Li(李素文), Wei Shan(单巍), Lisha Hu(胡丽莎). Chin. Phys. B, 2019, 28(8): 084212.
[9] Novel infrared differential optical absorption spectroscopy remote sensing system to measure carbon dioxide emission
Ru-Wen Wang(王汝雯), Pin-Hua Xie(谢品华), Jin Xu(徐晋), Ang Li(李昂). Chin. Phys. B, 2019, 28(1): 013301.
[10] Double band-inversions of bilayer phosphorene under strain and their effects on optical absorption
Shi He(何诗), Mou Yang(杨谋), Rui-Qiang Wang(王瑞强). Chin. Phys. B, 2018, 27(4): 047303.
[11] Intersubband optical absorption of electrons in double parabolic quantum wells of AlxGa1-xAs/AlyGa1-yAs
Shu-Fang Ma(马淑芳), Yuan Qu(屈媛), Shi-Liang Ban(班士良). Chin. Phys. B, 2018, 27(2): 027103.
[12] Tunable edge bands and optical properties in black phosphorus nanoribbons under electric field
Hong Liu(刘红). Chin. Phys. B, 2018, 27(12): 127301.
[13] Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot
Ahmed S Jbara, Zulkafli Othaman, M A Saeed. Chin. Phys. B, 2016, 25(5): 057801.
[14] Visible to deep ultraviolet range optical absorption of electron irradiated borosilicate glass
Wang Tie-Shan (王铁山), Duan Bing-Huang (段丙皇), Tian Feng (田丰), Peng Hai-Bo (彭海波), Chen Liang (陈亮), Zhang Li-Min (张利民), Yuan Wei (袁伟). Chin. Phys. B, 2015, 24(7): 076102.
[15] Exploring photocurrent output from donor/acceptor bulk-heterojunctions by monitoring exciton quenching
Wang Xin-Ping (王新平), He Zhi-Qun (何志群), Liang Chun-Jun (梁春军), Qiu Hai-An (邱海安), Jing Xi-Ping (荆西平). Chin. Phys. B, 2015, 24(6): 063301.
No Suggested Reading articles found!