| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Piezo-phototronic effect on intersubband optical absorption in ZnO/MgZnO quantum wells |
| Yuchang Liu(刘羽畅)1,†, Jiuzhou Chen(陈九州)2,†, Yonglong Yang(杨永龙)2,†, Xiaolong Pan(潘小龙)2, Xin Xue(薛鑫)3, Minjiang Dan(但敏江)2,‡, Zhengwei Xiong(熊政伟)2,§, and Zhipeng Gao(高志鹏)2,4,¶ |
1 School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China; 2 Joint Laboratory for Extreme Conditions Matter Properties, School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China; 3 Department of Physics, Lvliang University, Lvliang 033000, China; 4 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China |
|
|
|
|
Abstract Intersubband transition in ZnO/MgZnO quantum well has been exploited for infrared and terahertz optoelectronic applications due to its large band offset and fascinating material properties. Here, we theoretically demonstrate piezo-phototronic effect as another way to control the intersubband absorption wavelength through quantum-confined Stark effect. The intersubband optical absorption properties under different stresses are obtained by solving the eight-band $k\cdot p$ Hamiltonian and coupled Schrödinger-Poisson equations self-consistently. By combining stress control and quantum well structure, the absorption wavelength can show infrared blueshift or redshift phenomena in a wide range. This work can provide an effective avenue to control and utilize quantum-confined Stark effect in intersubband infrared absorption and promote the relative potential optoelectronic devices.
|
Received: 09 January 2025
Revised: 13 April 2025
Accepted manuscript online: 21 April 2025
|
|
PACS:
|
78.67.De
|
(Quantum wells)
|
| |
78.20.hb
|
(Piezo-optical, elasto-optical, acousto-optical, and photoelastic effects)
|
| |
71.35.Cc
|
(Intrinsic properties of excitons; optical absorption spectra)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2430204, U23A20567, and U2230119) and the Outstanding Youth Science and Technology Talents Program of Sichuan Province, China (Grant No. 22JCQN0005). |
Corresponding Authors:
Minjiang Dan, Zhengwei Xiong, Zhipeng Gao
E-mail: minjiang.dan@swust.edu.cn;zw-xiong@swust.edu.cn;z.p.gao@foxmail.com
|
Cite this article:
Yuchang Liu(刘羽畅), Jiuzhou Chen(陈九州), Yonglong Yang(杨永龙), Xiaolong Pan(潘小龙), Xin Xue(薛鑫), Minjiang Dan(但敏江), Zhengwei Xiong(熊政伟), and Zhipeng Gao(高志鹏) Piezo-phototronic effect on intersubband optical absorption in ZnO/MgZnO quantum wells 2025 Chin. Phys. B 34 087802
|
[1] Sun H D, Makino T, Segawa Y, et al. 2002 J. Appl. Phys. 91 1993 [2] Ryu Y, Lee T S, Lubguban J A, et al. 2006 Appl. Phys. Lett. 88 241108 [3] Willander M, Nur O, Zhao Q X, et al. 2009 Nanotechnology 20 332001 [4] Van Vugt L K, Ruhle S, Ravindran P, et al. 2006 Phys. Rev. Lett. 97 147401 [5] Teisseyre H, Jarosz D, Marona L, et al. 2020 Phys. Status Solidi (a) 218 202000344 [6] Ohtomo A, Kawasaki M, Koida T, et al 1998 Appl. Phys. Lett. 72 2466 [7] YangW, Vispute R D, Choopun S, et al. 2001 Appl. Phys. Lett. 78 2787 [8] Li Z, Wang P, He J, et al. 2017 Superlattices and Microstructures 111 852 [9] Makino T, Segawa Y, Kawasaki M, et al. 2001 Appl. Phys. Lett. 78 1237 [10] Ohtani K, Belmoubarik M and Ohno H 2009 J. Crystal Growth 311 2176 [11] Orphal L, Kalusniak S, Benson O, et al. 2017 AIP Adv. 7 115309 [12] Xia C, Zhang H, An J, et al. 2014 Phys. Lett. A 378 2251 [13] Allen M W, Miller P, Reeves R J, et al. 2007 Appl. Phys. Lett. 90 062104 [14] Davis J A, Dao L V, Wen X, et al. 2008 Nanotechnology 19 055205 [15] Belmoubarik M and El Moutaouakil A 2023 J. Alloys Compd. 941 168960 [16] Thongnum A, Sa-Yakanit V and Pinsook U 2011 J. Phys. D: Appl. Phys. 44 325109 [17] Yano M, Hashimoto K and Fujimoto K, et al. 2007 J. Crystal Growth 301–302 353 [18] Bretagnon T, Lefebvre P, Guillet T, et al. 2007 Appl. Phys. Lett. 90 201912 [19] Morhain C, Bretagnon T, Lefebvre P, et al. 2005 Phys. Rev. B 72 241305 [20] Stölzel M, Kupper J, Brandt M, et al. 2012 J. Appl. Phys. 111 063701 [21] Park S H and Ahn D 2005 Appl. Phys. Lett. 87 253509 [22] Zhu L and Wang Z L 2019 J. Phys. D: Appl. Phys. 52 343001 [23] Dai X, Hua Q, Sha W, et al. 2022 J. Appl. Phys. 131 010903 [24] Dan M, Hu G, Nie J, et al. 2021 Small 17 e2008106 [25] Huang X, Du C, Zhou Y, et al. 2016 ACS Nano 10 5145 [26] Funato M and Kawakami Y 2008 J. Appl. Phys. 103 093501 [27] Belmoubarik M, Ohtani K and Ohno H 2008 Appl. Phys. Lett. 92 191906 [28] Matsui H, Hasuike N, Harima H, et al. 2008 J. Appl. Phys. 104 094309 [29] Cingolani R, Botchkarev A, Tang H, et al. 2000 Phys. Rev. B 61 2711 [30] Wan S P, Xia J B and Chang K 2001 J. Appl. Phys. 90 6210 [31] Kaminska A, Koronski K, Strak P, et al. 2020 J. Appl. Phys. 128 050901 [32] Teisseyre H, Kaminska A, Birner S, et al. 2016 J. Appl. Phys. 119 215702 [33] Grandjean N, Damilano B, Dalmasso S, et al. 1999 J. Appl. Phys. 86 3714 [34] Chuang S 1996 IEEE J. Quantum Electron. 32 1791 [35] Ridley B K, Schaff W J and Eastman L F 2003 J. Appl. Phys. 94 3972 [36] Saha S and Kumar J 2016 J. Comput. Electron. 15 1531 [37] Hedin L and Lundqvist B I 1971 J. Phys. C: Solid State Phys. 4 2064 [38] Chuang S L and Chang C S 1996 Phys. Rev. B 54 2491 [39] Fan W J, Abiyasa A P, Tan S T, et al. 2006 J. Crystal Growth 287 28 [40] Winkelnkemper M, Schliwa A and Bimberg D 2006 Phys. Rev. B 74 155322 [41] Sacconi F, Di Carlo A, Lugli P, et al. 2001 IEEE Trans. Electron Dev. 48 450 [42] Chenini L, Aissat A and Vilcot J P 2019 Superlattices and Microstructures 129 115 [43] Ashrafi A 2010 J. Appl. Phys. 107 123527 [44] Kobiakov I B 1980 Solid State Commun. 35 305 [45] Hu Y, Klein B D, Su Y, et al. 2013 Nano Lett. 13 5026 [46] He J, Wang P, Chen H, et al. 2016 Appl. Phys. Express 10 011101 [47] Moudou L H, Al-Hattab M, Rahmani K, et al. 2024 J. Luminescence 275 120727 [48] Kuo Y H, Lee Y K, Ge Y, et al. 2005 Nature 437 1334 [49] Robinson J W, Rice J H, Lee K H, et al. 2005 Appl. Phys. Lett. 86 213103 [50] Gruber T, Kirchner C, Kling R, et al. 2004 Appl. Phys. Lett. 84 5359 [51] Liu N, Hu G, Dan M, et al. 2019 Nano Energy 65 104091 [52] Meng B, Tamayo-Arriola J, Le Biavan N, et al. 2019 Phys. Rev. Appl. 12 054007 [53] Liu X Y, Holmström P, Jänes P, et al. 2007 Phys. Status Solidi (b) 244 2892 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|