Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(1): 017807    DOI: 10.1088/1674-1056/26/1/017807
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles

Yan Chen(陈艳)1, Xianchao Liu(刘贤超)1,2, Weidong Chen(陈卫东)1, Zhengwei Xie(谢征微)1, Yuerong Huang(黄跃容)1, Ling Li(李玲)1
1. College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China;
2. State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology, Chengdu 610054, China
Abstract  Localized surface plasmon (LSPR) resonance and sensing properties of a novel nanostructure (sexfoil nanoparticle) are studied using the finite-difference time-domain method. For the sandwich sexfoil nanoparticle, the calculated extinction spectrum shows that with the thickness of the dielectric layer increasing, long-wavelength peaks blueshift, while short-wavelength peaks redshift. Strong near-field coupling of the upper and lower metal layers leads to electric and magnetic field resonances; as the thickness increases, the electric field resonance gradually increases, while the magnetic field resonance decreases. The obtained refractive index sensitivity and figure of merit are 332 nm/RIU and 3.91 RIU-1, respectively. In order to obtain better sensing ability, we further research the LSPR character of monolayer Ag sexfoil nanoparticle. After a series of trials to optimize the thickness and shape, the refractive index sensitivity approximates 668 nm/RIU, and the greatest figure of merit value comes to 14.8 RIU-1.
Keywords:  sexfoil nanoparticle      localized surface plasmon resonance      extinction properties      LSPR sensors  
Received:  12 August 2016      Revised:  23 September 2016      Accepted manuscript online: 
PACS:  78.68.+m (Optical properties of surfaces)  
  42.62.Be (Biological and medical applications)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the Sichuan Provincial Department of Education, China (Grant No. 16ZA0047), the State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, China (Grant No. 201509), the Large Precision Instruments Open Project Foundation of Sichuan Normal University, China (Grant Nos. DJ201557, DJ201558 and DJ201560), and the State Key Laboratory of Optical Technologies on Nano Fabrication and Micro Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences.
Corresponding Authors:  Ling Li     E-mail:  lingli70@aliyun.com

Cite this article: 

Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲) Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles 2017 Chin. Phys. B 26 017807

[1] Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X A, Wang L H and Huang W 2015 Chin. Phys. B 24 045201
[2] Hutter E and Fendler J H 2004 Adv. Mater. 16 1685
[3] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[4] Li T, Yu L, Lu Z X, Song G and Zhang K 2011 Chin. Phys. B 20 087805
[5] Ye J and Van D P 2012 Nanoscale 4 7205
[6] Liu Z Q, Shao H B, Liu G Q, Liu X S, Zhou H Q, Hu Y, Zhang X N, Cai Z J and Gu G 2014 Appl. Phys. Lett. 104 081116
[7] Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L and Huang W 2015 Chin. Phys. B 24 115202
[8] Ci X T, Wu B T, Song M, Chen G X, Liu Y, Wu E and Zeng H P 2014 Chin. Phys. B 23 097303
[9] Wang B B, Zhou J, Zhang H P and Chen J P 2014 Chin. Phys. B 23 087303
[10] Jiang S M, Wu D J, Cheng Y and Liu X J 2012 Chin. Phys. B 21 127806
[11] Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E and Requicha A A G 2003 Nat. Mater. 2 229
[12] Chowdhury M H, Ray K, Gray S K, Pond J and Lakowicz J R 2009 Anal. Chem. 81 1397
[13] Zhou X, Fu Y, Li K, Wang S and Cai Z 2008 Appl. Phys. B 91 373
[14] Wang B B, Zhou J, Chen D, Fang Y T and Chen M Y 2015 Chin. Phys. B 24 087301
[15] Anker J N, Hall W P, Lyandres O, Lyandres O, Shah N C, Zhao J and Duyne R P V 2008 Nat. Mater. 7 442
[16] Hotta K, Yamaguchi A and Teramae N 2012 ACS Nano 6 1541
[17] Chen L, Wei H, Chen K Q and Xu H X 2014 Chin. Phys. B 23 027303
[18] Dong P P, Wu Y T, Guo W Y and Di J W 2013 Plasmonics 8 1577
[19] Piliarik M, Kvasnika P, Galler N, Krenn J R and Homola J 2011 Opt. Express 19 9213
[20] Augui B and Barnes W L 2009 Opt. Lett. 34 401
[21] Husu H, Mkitalo J, Laukkanen J, Kuittinen M and Kauranen M 2010 Opt. Express 18 16601
[22] Liu J, Chen Y S, Cai H Y, Chen X Y, Li C W and Yang C F 2015 Material 8 2688
[23] Sekhon J S and Verma S S 2015 J. Mod. Optic. 62 435
[24] Huang C, Ye J, Wang S, Stakenborg T and Lagae L 2012 Appl. Phys. Lett. 100 173114
[25] Chang Y C, Chung H C, Lu S C and Guo T F 2013 Nanotechnology 24 095302
[26] Ma W Y, Yang H, Hilton J P, Lin Q, Liu J Y, Huang L X and Yao J 2010 Opt. Express 18 843
[27] Luo J, Qiu C K, Wang W M and Lin Q 2014 Appl. Opt. 53 3528
[28] Bi G, Wang L, Ling L, Yokota Y, Nishijima Y, Ueno K, Misawa H and Qiu J 2013 Opt. Commun. 294 213
[29] Wang Q, Wu S F, Li X F and Wang X G 2010 Chin. Phys. B 19 117304
[30] Zhang M J, Zhou X L and Fu Y Q 2010 Plasmonics 5 355
[31] Geng C, Yan Q F, Du C X, Dong P, Zhang L J, Wei T B, Hao Z B, Wang X Q and Shen D Z 2014 ACS Photonics sl1 754
[32] Su K H, Wei Q H Zhang X, Mock J J, Smith D R and Schultz S 2003 Nano Lett. 3 1087
[33] Atay T, Song J H and Nurmikko A V 2004 Nano Lett. 4 1627
[34] Dahmen C, Schmidt B and Plessen G 2007 Nano Lett. 7 318
[35] Palik E D 1998 Handbook of Optical Constants of Solids (New York:Academic Press)
[36] Yang L Y, Du C L and Luo X G 2009 J. Nanosci. Nanotechno. 9 2660
[37] Hong Y, Huh Y M, Yoon D S and Yang J 2012 J. Nanomater. 111
[38] Fischer J, Vogel N, Mohammadi R, Butt H, Landfester K, Weiss C K and Kreiter M 2011 Nanoscale 3 4788
[39] Koya A N, Ji B, Hao Z, Hao Z Q and Lin J Q 2015 J. Appl. Phys. 118 113101
[40] Nordlander P, Oubre C and Prodan E 2004 Nano Lett. 4 899
[41] Li X, Yang L Y, Hu C G, Luo X G and Hong M H 2011 Opt. Express 19 5283
[42] Liu N, Guo H C, Fu L W, Kaiser S, Schweizer H and Giessen H 2007 Adv. Mater. 19 3628
[43] Evanoff D D and Chumanov G 2005 Chem. Phys. Chem. 6 1221
[44] Ekinci Y, Christ A, Agio M, Martin O J F, Solak H H and Lffler J F 2008 Opt. Express 16 13287
[45] Pakizeh T, Abrishamian M S Granpayeh N, Dmitriev A and Kll M 2006 Opt. Express 14 8240
[46] Špačková B and Homola J 2013 Opt. Express 21 27490
[47] Navas M P and Soni R K 2014 Appl. Phys. A 116 879
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[3] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[4] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[5] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[6] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[7] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[8] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[9] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[10] Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳). Chin. Phys. B, 2015, 24(8): 087301.
[11] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
[12] Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy
Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平). Chin. Phys. B, 2014, 23(9): 097303.
[13] Fano-like resonance characteristics of asymmetric Fe2O3@Au core/shell nanorice dimer
Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Zhang Hao-Peng (张昊鹏), Chen Jin-Ping (陈金平). Chin. Phys. B, 2014, 23(8): 087303.
[14] High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice
Chen Li (陈立), Wei Hong (魏红), Chen Ke-Qiu (陈克求), Xu Hong-Xing (徐红星). Chin. Phys. B, 2014, 23(2): 027303.
[15] Influence of polarization direction, incidence angle, and geometry on near-field enhancement in two-layered gold nanowires
Wu Da-Jian(吴大建), Jiang Shu-Min(蒋书敏), and Liu Xiao-Jun(刘晓峻) . Chin. Phys. B, 2012, 21(7): 077803.
No Suggested Reading articles found!