CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles |
Yan Chen(陈艳)1, Xianchao Liu(刘贤超)1,2, Weidong Chen(陈卫东)1, Zhengwei Xie(谢征微)1, Yuerong Huang(黄跃容)1, Ling Li(李玲)1 |
1. College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, China; 2. State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology, Chengdu 610054, China |
|
|
Abstract Localized surface plasmon (LSPR) resonance and sensing properties of a novel nanostructure (sexfoil nanoparticle) are studied using the finite-difference time-domain method. For the sandwich sexfoil nanoparticle, the calculated extinction spectrum shows that with the thickness of the dielectric layer increasing, long-wavelength peaks blueshift, while short-wavelength peaks redshift. Strong near-field coupling of the upper and lower metal layers leads to electric and magnetic field resonances; as the thickness increases, the electric field resonance gradually increases, while the magnetic field resonance decreases. The obtained refractive index sensitivity and figure of merit are 332 nm/RIU and 3.91 RIU-1, respectively. In order to obtain better sensing ability, we further research the LSPR character of monolayer Ag sexfoil nanoparticle. After a series of trials to optimize the thickness and shape, the refractive index sensitivity approximates 668 nm/RIU, and the greatest figure of merit value comes to 14.8 RIU-1.
|
Received: 12 August 2016
Revised: 23 September 2016
Accepted manuscript online:
|
PACS:
|
78.68.+m
|
(Optical properties of surfaces)
|
|
42.62.Be
|
(Biological and medical applications)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
Fund: Project supported by the Sichuan Provincial Department of Education, China (Grant No. 16ZA0047), the State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, China (Grant No. 201509), the Large Precision Instruments Open Project Foundation of Sichuan Normal University, China (Grant Nos. DJ201557, DJ201558 and DJ201560), and the State Key Laboratory of Optical Technologies on Nano Fabrication and Micro Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences. |
Corresponding Authors:
Ling Li
E-mail: lingli70@aliyun.com
|
Cite this article:
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲) Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles 2017 Chin. Phys. B 26 017807
|
[1] |
Hao J Y, Xu Y, Zhang Y P, Chen S F, Li X A, Wang L H and Huang W 2015 Chin. Phys. B 24 045201
|
[2] |
Hutter E and Fendler J H 2004 Adv. Mater. 16 1685
|
[3] |
Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
|
[4] |
Li T, Yu L, Lu Z X, Song G and Zhang K 2011 Chin. Phys. B 20 087805
|
[5] |
Ye J and Van D P 2012 Nanoscale 4 7205
|
[6] |
Liu Z Q, Shao H B, Liu G Q, Liu X S, Zhou H Q, Hu Y, Zhang X N, Cai Z J and Gu G 2014 Appl. Phys. Lett. 104 081116
|
[7] |
Peng L, Mei Y, Chen S F, Zhang Y P, Hao J Y, Deng L L and Huang W 2015 Chin. Phys. B 24 115202
|
[8] |
Ci X T, Wu B T, Song M, Chen G X, Liu Y, Wu E and Zeng H P 2014 Chin. Phys. B 23 097303
|
[9] |
Wang B B, Zhou J, Zhang H P and Chen J P 2014 Chin. Phys. B 23 087303
|
[10] |
Jiang S M, Wu D J, Cheng Y and Liu X J 2012 Chin. Phys. B 21 127806
|
[11] |
Maier S A, Kik P G, Atwater H A, Meltzer S, Harel E, Koel B E and Requicha A A G 2003 Nat. Mater. 2 229
|
[12] |
Chowdhury M H, Ray K, Gray S K, Pond J and Lakowicz J R 2009 Anal. Chem. 81 1397
|
[13] |
Zhou X, Fu Y, Li K, Wang S and Cai Z 2008 Appl. Phys. B 91 373
|
[14] |
Wang B B, Zhou J, Chen D, Fang Y T and Chen M Y 2015 Chin. Phys. B 24 087301
|
[15] |
Anker J N, Hall W P, Lyandres O, Lyandres O, Shah N C, Zhao J and Duyne R P V 2008 Nat. Mater. 7 442
|
[16] |
Hotta K, Yamaguchi A and Teramae N 2012 ACS Nano 6 1541
|
[17] |
Chen L, Wei H, Chen K Q and Xu H X 2014 Chin. Phys. B 23 027303
|
[18] |
Dong P P, Wu Y T, Guo W Y and Di J W 2013 Plasmonics 8 1577
|
[19] |
Piliarik M, Kvasnika P, Galler N, Krenn J R and Homola J 2011 Opt. Express 19 9213
|
[20] |
Augui B and Barnes W L 2009 Opt. Lett. 34 401
|
[21] |
Husu H, Mkitalo J, Laukkanen J, Kuittinen M and Kauranen M 2010 Opt. Express 18 16601
|
[22] |
Liu J, Chen Y S, Cai H Y, Chen X Y, Li C W and Yang C F 2015 Material 8 2688
|
[23] |
Sekhon J S and Verma S S 2015 J. Mod. Optic. 62 435
|
[24] |
Huang C, Ye J, Wang S, Stakenborg T and Lagae L 2012 Appl. Phys. Lett. 100 173114
|
[25] |
Chang Y C, Chung H C, Lu S C and Guo T F 2013 Nanotechnology 24 095302
|
[26] |
Ma W Y, Yang H, Hilton J P, Lin Q, Liu J Y, Huang L X and Yao J 2010 Opt. Express 18 843
|
[27] |
Luo J, Qiu C K, Wang W M and Lin Q 2014 Appl. Opt. 53 3528
|
[28] |
Bi G, Wang L, Ling L, Yokota Y, Nishijima Y, Ueno K, Misawa H and Qiu J 2013 Opt. Commun. 294 213
|
[29] |
Wang Q, Wu S F, Li X F and Wang X G 2010 Chin. Phys. B 19 117304
|
[30] |
Zhang M J, Zhou X L and Fu Y Q 2010 Plasmonics 5 355
|
[31] |
Geng C, Yan Q F, Du C X, Dong P, Zhang L J, Wei T B, Hao Z B, Wang X Q and Shen D Z 2014 ACS Photonics sl1 754
|
[32] |
Su K H, Wei Q H Zhang X, Mock J J, Smith D R and Schultz S 2003 Nano Lett. 3 1087
|
[33] |
Atay T, Song J H and Nurmikko A V 2004 Nano Lett. 4 1627
|
[34] |
Dahmen C, Schmidt B and Plessen G 2007 Nano Lett. 7 318
|
[35] |
Palik E D 1998 Handbook of Optical Constants of Solids (New York:Academic Press)
|
[36] |
Yang L Y, Du C L and Luo X G 2009 J. Nanosci. Nanotechno. 9 2660
|
[37] |
Hong Y, Huh Y M, Yoon D S and Yang J 2012 J. Nanomater. 111
|
[38] |
Fischer J, Vogel N, Mohammadi R, Butt H, Landfester K, Weiss C K and Kreiter M 2011 Nanoscale 3 4788
|
[39] |
Koya A N, Ji B, Hao Z, Hao Z Q and Lin J Q 2015 J. Appl. Phys. 118 113101
|
[40] |
Nordlander P, Oubre C and Prodan E 2004 Nano Lett. 4 899
|
[41] |
Li X, Yang L Y, Hu C G, Luo X G and Hong M H 2011 Opt. Express 19 5283
|
[42] |
Liu N, Guo H C, Fu L W, Kaiser S, Schweizer H and Giessen H 2007 Adv. Mater. 19 3628
|
[43] |
Evanoff D D and Chumanov G 2005 Chem. Phys. Chem. 6 1221
|
[44] |
Ekinci Y, Christ A, Agio M, Martin O J F, Solak H H and Lffler J F 2008 Opt. Express 16 13287
|
[45] |
Pakizeh T, Abrishamian M S Granpayeh N, Dmitriev A and Kll M 2006 Opt. Express 14 8240
|
[46] |
Špačková B and Homola J 2013 Opt. Express 21 27490
|
[47] |
Navas M P and Soni R K 2014 Appl. Phys. A 116 879
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|