Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087301    DOI: 10.1088/1674-1056/24/8/087301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure

Wang Bin-Bing (王彬兵)a, Zhou Jun (周骏)a, Chen Dong (陈栋)a, Fang Yun-Tuan (方云团)b, Chen Ming-Yang (陈明阳)c
a Institute of Photonics, Faculty of Science, Ningbo University, Ningbo 315211, China;
b School of Computer Science and Telecommunication Engineering, Jiangsu University, Zhenjiang 212013, China;
c School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
Abstract  According to the plasmon hybridization theory, the plasmon resonance characteristics of the gold nanocrescent/nanoring (NCNR) structure are systematically investigated by the finite element method. It is found that the extinction spectra of NCNR structure exhibit multiple plasmon resonance peaks, which could be attributed to the result of the plasmon couplings between the multipolar plasmon modes of nanocrescent and the dipolar, quadrupolar, hexapolar, octupolar, decapolar plasmon modes of nanoring. By changing the geometric parameters, the intense and separate multiple plasmon resonance peaks are obtained and can be tuned in a wide wavelength range. It is further found that the plasmon coupling induces giant multipole electric field enhancements around the tips of the nanocrescent. The tunable and intense multiple plasmon resonances of NCNR structure may provide effective applications in multiplex biological sensing.
Keywords:  localized surface plasmon resonance      field enhancement      coherent couplings      biological sensors  
Received:  20 January 2015      Revised:  02 March 2015      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  87.85.fk (Biosensors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61275153 and 61320106014), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY12A04002), the Natural Science Foundation of Ningbo City, China (Grant Nos. 2010D10018 and 2012A610107), and the K. C. Wong Magna Foundation of Ningbo University, China.
Corresponding Authors:  Zhou Jun     E-mail:  zhoujun@nbu.edu.cn

Cite this article: 

Wang Bin-Bing (王彬兵), Zhou Jun (周骏), Chen Dong (陈栋), Fang Yun-Tuan (方云团), Chen Ming-Yang (陈明阳) Tunable multiple plasmon resonances and local field enhancement of nanocrescent/nanoring structure 2015 Chin. Phys. B 24 087301

[1] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H and Chong C T 2010 Nat. Mater. 9 707
[2] Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G and Lienau C 2013 Nat. Photon. 7 128
[3] Szunerits S and Boukherroub R 2012 Chem. Commun. 48 8999
[4] Fang Z Y and Zhu X 2013 Adv. Mater. 25 3840
[5] Offermans P, Schaafsma M C, Rodriguez S R, Zhang Y, Crego-Calama M, Brongersma S H and GóMez Rivas J 2011 ACS Nano 5 5151
[6] De Jesus M, Giesfeldt K and Sepaniak M 2004 J. Raman Spectrosc. 35 895
[7] Liebermann T and Knoll W 2000 Colloids Surf. A: Physicochem. Eng. Asp. 171 115
[8] Weissleder R and Ntziachristos V 2003 Nat. Med. 9 123
[9] Seo S H, Kim B M, Joe A, Han H W, Chen X, Cheng Z and Jang E S 2014 Biomaterials 35 3309
[10] Sau T K, Rogach A L, Jäckel F, Klar T A and Feldmann J 2010 Adv. Mater. 22 1805
[11] Wiley B, Sun Y and Xia Y 2007 Acc. Chem. Res. 40 1067
[12] Wiley B, Sun Y, Mayers B and Xia Y 2005 Chem. Eur. J. 11 454
[13] Hu M, Chen J, Li Z Y, Au L, Hartland G V, Li X, Marquez M and Xia Y 2006 Chem. Soc. Rev. 35 1084
[14] Zhu J, Wang Y and Huang L 2005 Mater. Chem. Phys. 93 383
[15] Shankar S S, Rai A, Ahmad A and Sastry M 2005 Chem. Mater. 17 566
[16] Verma V C, Singh S K, Solanki R and Prakash S 2011 Nanoscale Res. Lett. 6 16
[17] Song J H, Kim F, Kim D and Yang P 2005 Chem. Eur. J. 11 910
[18] Tam F, Moran C and Halas N 2004 J. Phys. Chem. B 108 17290
[19] Mclellan J M, Li Z Y, Siekkinen A R and Xia Y 2007 Nano Lett. 7 1013
[20] Prodan E, Radloff C, Halas N and Nordlander P 2003 Science 302 419
[21] Hao F, Nordlander P, Sonnefraud Y, Dorpe P V and Maier S A 2009 ACS Nano 3 643
[22] Zhu J, Li J J and Zhao J W 2013 Plasmonics 8 1493
[23] Zhang Q and Xiao J J 2013 Opt. Lett. 38 4240
[24] Pavan Kumar G 2012 J. Opt. Soc. Am. B 29 594
[25] Rodriguez M, Furse C, Shumaker-Parry J S and Blair S 2014 ACS Photonics 1 496
[26] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[27] Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E, Jonin C and Brevet P F 2010 Nano Lett. 10 1717
[28] Knight M W and Halas N J 2008 New J. Phys. 10 105006
[29] Jiang S M, Wu D J, Cheng Y, Liu X J 2012 Chin. Phys. B 21 127806
[30] Wang F and Shen Y R 2006 Phys. Rev. Lett. 97 206806
[31] Zhang S, Bao K, Halas N J, Xu H and Nordlander P 2011 Nano Lett. 11 1657
[32] Zhou F, Liu Y and Li Z Y 2011 Chin. Phys. B 20 037303
[33] Bukasov R, Ali T A, Nordlander P and Shumaker-Parry J S 2010 ACS Nano 4 6639
[34] Yang Z J, Zhang Z S, Zhang L H, Li Q Q, Hao Z H and Wang Q Q 2011 Opt. Lett. 36 1542
[35] Wang B B, Zhou J, Zhang H P and Chen J P 2014 Chin. Phys. B 23 087303
[36] Zhang Y, Jia T, Zhang H and Xu Z 2012 Opt. Lett. 37 4919
[37] Wang Z, Zong S, Chen H, Wu H and Cui Y 2011 Talanta 86 170
[38] Wang Z, Zong S, Li W, Wang C, Xu S, Chen H and Cui Y 2012 J. Am. Chem. Soc. 134 2993
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] Light focusing in linear arranged symmetric nanoparticle trimer on metal film system
Yuxia Tang(唐裕霞), Shuxia Wang(王蜀霞), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2022, 31(1): 017303.
[3] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[4] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[5] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[6] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[7] Extra-narrowband metallic filters with an ultrathin single-layer metallic grating
Ran Wang(王然), Qi-Huang Gong(龚旗煌), Jian-Jun Chen(陈建军). Chin. Phys. B, 2020, 29(6): 064215.
[8] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[9] Cascaded plasmonic nanorod antenna for large broadband local electric field enhancement
Dou Zhang(张豆), Zhong-Jian Yang(杨中见), Jun He(何军). Chin. Phys. B, 2019, 28(10): 107802.
[10] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[11] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
[12] Ultrasensitive nanosensors based on localized surface plasmon resonances: From theory to applications
Wen Chen(陈文), Huatian Hu(胡华天), Wei Jiang(姜巍), Yuhao Xu(徐宇浩), Shunping Zhang(张顺平), Hongxing Xu(徐红星). Chin. Phys. B, 2018, 27(10): 107403.
[13] Optical interaction between one-dimensional fiber photonic crystal microcavity and gold nanorod
Yang Yu(于洋), Ting-Hui Xiao(肖廷辉), Zhi-Yuan Li(李志远). Chin. Phys. B, 2018, 27(1): 017301.
[14] Effects of thickness & shape on localized surface plasmon resonance of sexfoil nanoparticles
Yan Chen(陈艳), Xianchao Liu(刘贤超), Weidong Chen(陈卫东), Zhengwei Xie(谢征微), Yuerong Huang(黄跃容), Ling Li(李玲). Chin. Phys. B, 2017, 26(1): 017807.
[15] The enhancement of 21.2%-power conversion efficiency in polymer photovoltaic cells by using mixed Au nanoparticles with a wide absorption spectrum of 400 nm-1000 nm
Hao Jing-Yu (郝敬昱), Xu Ying (徐颖), Zhang Yu-Pei (张玉佩), Chen Shu-Fen (陈淑芬), Li Xing-Ao (李兴鳌), Wang Lian-Hui (汪联辉), Huang Wei (黄维). Chin. Phys. B, 2015, 24(4): 045201.
No Suggested Reading articles found!