CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy |
Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平) |
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China |
|
|
Abstract The localized surface plasmon resonance properties of Al and Alcore/Al2O3shell nanosphere dimers with Al and Al core nanosphere radii of 20 nm and Al2O3 shell of 2 nm in the deep-ultraviolet region have been studied using the finite difference time domain method. The extinction spectra and the electric field distribution profiles of the two dimers for various gap distances between two individual nanospheres are compared with those of the corresponding monomers to reveal the extent of plasmon coupling. It is found that with the interparticle distance decreasing, a strong plasmon coupling between two Al or Alcore/Al2O3shell nanospheres is observed accompanied by a significant red shift in the extinction spectra at the parallel polarization direction of the incident light related to the dimer axis, while for the case of the perpendicular polarization direction, a weak plasmon coupling arises characterized by a slight blue shift in the extinction spectra. The electric field distribution profiles show that benefiting from the dielectric Al2O3 shell, the gap distance of Alcore/Al2O3shell nanosphere dimers can be tailored to < 1 nm scale and results in a very high electric field enhancement. The estimated surface-enhanced Raman scattering enhancement factors suggests that the Alcore/Al2O3shell nanosphere dimers with the gap of < 1 nm gave rise to an enhancement as high as 8.1×107 for interparticle gap=0.5 nm. Our studies reveal that the Alcore/Al2O3shell nanosphere dimers may be promising substrates for surface-enhanced spectroscopy in the deep-ultraviolet region.
|
Received: 28 February 2014
Revised: 24 March 2014
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104079 and 61378033), the National Key Scientific Instrument Project of China (Grant No. 2012YQ150092), the Research Foundation for the Doctoral Program of Higher Education of China (Grant No. 20110076120019), and the State Key Laboratory of Luminescent Materials and Devices at South China University of Technology. |
Corresponding Authors:
Wu Bo-Tao
E-mail: btwu@phy.ecnu.edu.cn
|
Cite this article:
Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平) Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy 2014 Chin. Phys. B 23 097303
|
[1] |
Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
|
[2] |
Tao J, Lu Y H, Zheng R S, Lin K Q, Xie Z G, Luo Z F, Li S L, Wang P and Ming H 2008 Chin. Phys. Lett. 25 4459
|
[3] |
Atwater H A and Polman A 2010 Nat. Mater. 9 205
|
[4] |
Kinkhabwala A, Yu Z, Fan S H, Avlasevich Y, Muellen K and Moerner W E 2009 Nat. Photonics 3 654
|
[5] |
Wu E, Chi Y Z, Wu B T, Xia K W, Yokota Y, Ueno K, Misawa H and Zeng H P 2011 J. Lumin. 131 1971
|
[6] |
Yokota Y, Ueno K and Misawa H 2011 Chem. Commun. 47 3505
|
[7] |
Song M, Chen G X, Liu Y, Wu E, Wu B T and Zeng H P 2012 Opt. Express 20 22290
|
[8] |
Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L and Tian Z Y 2010 Nature 464 392
|
[9] |
Ueno K, Juodkazis S, Shibuya T, Yokota Y, Mizeikis V, Sasaki K and Misawa H 2008 J. Am. Chem. Soc. 130 6928
|
[10] |
Wu B T, Ueno K, Yokota Y, Sun K, Zeng H P and Misawa H 2012 J. Phys. Chem. Lett. 3 1443
|
[11] |
Zhao H J 2012 Chin. Phys. B 21 087104
|
[12] |
Zhang Z Y, Wang L N, Hu H F, Li K W, Ma X P and Song G F 2013 Chin. Phys. B 22 104213
|
[13] |
Wang X M, Song M, Liang Y, Wang Z Y, Kong W B, Huang J H, Wu E, Wu B T, Wu G and Zeng H P 2013 Opt. Express 21 6442
|
[14] |
Akimov A V, Mukherjee A, Yu C L, Chang D E, Zibrov A S, Hemmer P R, Park H and Lukin M D 2007 Nature 450 402
|
[15] |
Chi Y Z, Chen G X, Jelezko F, Wu E and Zeng H P 2011 IEEE Photon. Technol. Lett. 23 374
|
[16] |
Chen G X, Liu Y, Song M, Wu B T, Wu E and Zeng H P 2013 IEEE J. Sel. Top. Quant. 19 4602404
|
[17] |
Efremov E V, Ariese F and Gooijer C 2008 Anal. Chim. Acta 606 119
|
[18] |
Asher S A 1993 Anal. Chem. 65 59A
|
[19] |
Asher S A and Johnson C R 1984 Science 225 311
|
[20] |
McMahon J M, Schatz G C and Gray S K 2013 Phys. Chem. Chem. Phys. 15 5415
|
[21] |
Ekinci Y, Solak H H and Löffler J F 2008 J. Appl. Phys. 104 083107
|
[22] |
Chowdhury M H, Ray K, Gray S K, Pond J and Lakowicz J R 2009 Anal. Chem. 81 1397
|
[23] |
Hu J L, Chen L, Lian Z C, Cao M, Li H J, Sun W B and Tong N L 2012 J. Phys. Chem. C 116 15584
|
[24] |
Langhammer C, Schwind M, Kasemo B and Zoric I 2008 Nano Lett. 8 1461
|
[25] |
Jha S K, Ahmed Z, Agio M, Ekinci Y and Löffler J F 2012 J. Am. Chem. Soc. 134 1966
|
[26] |
Chan G H, Zhao J, Schatz G C and Duyne R P V 2008 J. Phys. Chem. C 112 13958
|
[27] |
Taguchi A, Saito Y, Watanabe K, Song Y J and Kawata S 2012 Appl. Phys. Lett. 101 081110
|
[28] |
Li L, Lim S F, Puretzky A A, Riehn R and Hallen H D 2012 Appl. Phys. Lett. 101 113116
|
[29] |
Castro-Lopez M, Brinks D, Sapienza R and Hulst N F 2011 Nano Lett. 11 4674
|
[30] |
Knight M W, Liu L F, Wang Y M, Brown L, Mukherjee S, King M S, Everitt H O, Nordlander P and Halas N J 2012 Nano Lett. 12 6000
|
[31] |
Schwab P M, Moosmann C, Wissert M D, Schmidt E W, Ilin K S, Siegel M, Lemmer U and Eisler H 2013 Nano Lett. 13 1535
|
[32] |
Prodan E, Radloff C, Halas N J and Nordlander P 2003 Science 302 419
|
[33] |
Talley C E, Jackson J B, Oubre C, Grady N K, Hollars C W, Lane S M, Huser T R, Norlander P and Halas N J 2005 Nano Lett. 5 1569
|
[34] |
Thomas R and Swathi R S 2012 J. Phys. Chem. C 116 21982
|
[35] |
Ou F S, Hu M, Naumov I, Kim A, Wu W, Bratkovsky A M, Li X M, Williams R S and Li Z Y 2011 Nano Lett. 11 2538
|
[36] |
Palik E D 1984 Handbook of Optical Constants of Solids (Academic Press: New York)
|
[37] |
Jain P K, Huang W Y and EI-Sayed M A 2007 Nano Lett. 7 2080
|
[38] |
Tanaka Y, Ishiguro H, Fujiwara H, Yokota Y, Ueno K, Misawa H and Sasaki K 2011 Opt. Express 19 7726
|
[39] |
Sun Q, Ueno K, Yu H, Kubo A, Matsuo Y and Misawa H 2013 Light: Sci. Appl. 2 e118
|
[40] |
Atay T, Song J H and Nurmikko A V 2004 Nano Lett. 4 1627
|
[41] |
Lassiter J B, Aizpurua J, Hernandez L I, Brandl D W, Romero I, Lal S, Hafner J H, Nordlander P and Halas N J 2008 Nano Lett. 8 1212
|
[42] |
Almedia V R, Xu Q F, Barrios C A and Lipson M 2004 Opt. Lett. 29 1209
|
[43] |
Kern J, Großmann S, Tarakina N V, Häckel T, Emmerling M, Kamp M, Huang J S, Biagioni P, Prangsma J C and Hecht B 2012 Nano Lett. 12 5504
|
[44] |
Lim D K, Jeon K S, Kim H M, Nam J M and Suh Y D 2010 Nat. Mater. 9 60
|
[45] |
Lee J H, Nam J M, Jeon K S, Lim D K, Kim H M, Kwon S, Lee H and Suh Y D 2012 ACS Nano 6 9574
|
[46] |
Zuloaga J, Prodan E and Nordlander P 2009 Nano Lett. 9 887
|
[47] |
Scholl J A, Garcia-Etxarri A, Koh A L and Dionne J A 2013 Nano Lett. 13 564
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|