|
|
High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice |
Chen Li (陈立)a b, Wei Hong (魏红)b, Chen Ke-Qiu (陈克求)a, Xu Hong-Xing (徐红星)b c |
a Department of Applied Physics, Hunan University, Changsha 410082, China;
b Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c Center for Nanoscience and Nanotechnology, and School of Physics and Technology, Wuhan University, Wuhan 430072, China |
|
|
Abstract Using numerical simulation, we investigate the high-order plasmon resonances in individual nanostructures of an Ag nanorice core surrounded by an Al2O3 shell. The peak positions of localized surface plasmon resonances (LSPRs) are red-shifted exponentially with the increase of the dielectric shell thickness. This is due to the exponential decay of electromagnetic field intensity in the direction perpendicular to the interface. This exponential red-shift depends on the wavelength of the resonance peak instead of the resonance order. In addition, we find that the LSPRs in an Ag nanorice of 60-nm width can be perfectly described by a single linear function. These features make nanorice an ideal platform for sensing applications.
|
Received: 20 August 2013
Revised: 18 September 2013
Accepted manuscript online:
|
PACS:
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
42.25.-p
|
(Wave optics)
|
|
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant Nos. 2009CB930700 and 2012YQ12006005), the National Natural Science Foundation of China (Grant Nos. 11134013, 11227407, and 11004237), and the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W04). |
Corresponding Authors:
Xu Hong-Xing
E-mail: hxxu@iphy.ac.cn
|
About author: 73.20.Mf; 78.67.-n; 42.25.-p |
Cite this article:
Chen Li (陈立), Wei Hong (魏红), Chen Ke-Qiu (陈克求), Xu Hong-Xing (徐红星) High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice 2014 Chin. Phys. B 23 027303
|
[1] |
Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
|
[2] |
Hutter E and Fendler J H 2004 Adv. Mater. 16 1685
|
[3] |
Noguez C 2007 J. Phys. Chem. C 111 3806
|
[4] |
Shuford K L, Lee J, Odom T W and Schatz G C 2008 J. Phys. Chem. C 112 6662
|
[5] |
Wang J F, Li H J, Zhou Z Y, Li X Y, Liu J and Yang H Y 2010 Chin. Phys. B 19 117310
|
[6] |
Pelton M, Aizpurua J and Bryant G 2008 Laser & Photon. Rev. 2 136
|
[7] |
Willets K A and Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
|
[8] |
Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A and Nuzzo R G 2008 Chem. Rev. 108 494
|
[9] |
Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
|
[10] |
Xu H X, Bjerneld E J, Kall M and Borjesson L 1999 Phys. Rev. Lett. 83 4357
|
[11] |
Xu H X, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
|
[12] |
Aizpurua J, Bryant G W, Richter L J, de Abajo F J G, Kelley B K and Mallouk T 2005 Phys. Rev. B 71 235420
|
[13] |
Muskens O L, Giannini V, Sanchez-Gil J A and Rivas J G 2007 Nano Lett. 7 2871
|
[14] |
Kim S, Jin J H, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
|
[15] |
Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M and Gao H J 2011 Chin. Phys. B 20 076103
|
[16] |
Krenn J R, Schider G, Rechberger W, Lamprecht B, Leitner A, Aussenegg F R and Weeber J C 2000 Appl. Phys. Lett. 77 3379
|
[17] |
Wei H, Reyes-Coronado A, Nordlander P, Aizpurua J and Xu H X 2010 ACS Nano 4 2649
|
[18] |
Lee Y H, Chen H J, Xu Q H and Wang J F 2011 J. Phys. Chem. C 115 7997
|
[19] |
Lopez-Tejeira F, Paniagua-Dominguez R and Sanchez-Gil J A 2012 ACS Nano 6 8989
|
[20] |
Kazuma E and Tatsuma T 2013 J. Phys. Chem. C 117 2435
|
[21] |
Stockman M I 2011 Opt. Express 19 22029
|
[22] |
Zhang S P, Chen L, Huang Y Z and Xu H X 2013 Nanoscale 5 6985
|
[23] |
Vesseur E J R, de Waele R, Kuttge M and Polman A 2007 Nano Lett. 7 2843
|
[24] |
Xu H X and Kall M 2002 Sensor Actuat. B-Chem. 87 244
|
[25] |
Whitney A V, Elam J W, Zou S L, Zinovev A V, Stair P C, Schatz G C and Van Duyne R P 2005 J. Phys. Chem. B 109 20522
|
[26] |
Shanthil M, Thomas R, Swathi R S and Thomas K G 2012 J. Phys. Chem. Lett. 3 1459
|
[27] |
Xu H X 2004 Appl. Phys. Lett. 85 5980
|
[28] |
Zhao K, Xu H X, Gu B H and Zhang Z Y 2006 J. Chem. Phys. 125 081102
|
[29] |
Wang W, Li Z P, Gu B H, Zhang Z Y and Xu H X 2009 ACS Nano 3 3493
|
[30] |
Asano S and Yamamoto G 1975 Appl. Opt. 14 29
|
[31] |
Jiang S M, Wu D J, Cheng Y and Liu X J 2012 Chin. Phys. B 21 127806
|
[32] |
de Abajo F J G and Howie A 2002 Phys. Rev. B 65 115418
|
[33] |
Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
|
[34] |
Hagemann H J, Gudat W and Kunz C 1974 Optical Constants from the Far Infrared to the X-ray Region (Hamburg: Deutsches Elektronen-Synchroton DESY)
|
[35] |
Dorfmüler J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F and Kern K 2009 Nano Lett. 9 2372
|
[36] |
Reed J M, Wang H N, Hu W F and Zou S L 2011 Opt. Lett. 36 4386
|
[37] |
Lopez-Tejeira F, Paniagua-Dominguez R, Rodriguez-Oliveros R and Sanchez-Gil J A 2012 New J. Phys. 14 023035
|
[38] |
Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar T A, Feldmann J, Nichtl A and Kurzinger K 2003 Nano Lett. 3 935
|
[39] |
Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
|
[40] |
Bryant G W, De Abajo F J G and Aizpurua J 2008 Nano Lett. 8 631
|
[41] |
Milligan T A 2005 Modern Antenna Design (New Jersey: John Wiley & Sons)
|
[42] |
Novotny L 2007 Phys. Rev. Lett. 98 266802
|
[43] |
Alù A and Engheta N 2008 Phys. Rev. Lett. 101 043901
|
[44] |
Taminiau T H, Stefani F D and van Hulst N F 2011 Nano Lett. 11 1020
|
[45] |
Liang H Y, Rossouw D, Zhao H G, Cushing S K, Shi H L, Korinek A, Xu H X, Rosei F, Wang W Z, Wu N Q, Botton G A and Ma D L 2013 J. Am. Chem. Soc. 135 9616
|
[46] |
Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|