Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 027303    DOI: 10.1088/1674-1056/23/2/027303
RAPID COMMUNICATION Prev   Next  

High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice

Chen Li (陈立)a b, Wei Hong (魏红)b, Chen Ke-Qiu (陈克求)a, Xu Hong-Xing (徐红星)b c
a Department of Applied Physics, Hunan University, Changsha 410082, China;
b Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
c Center for Nanoscience and Nanotechnology, and School of Physics and Technology, Wuhan University, Wuhan 430072, China
Abstract  Using numerical simulation, we investigate the high-order plasmon resonances in individual nanostructures of an Ag nanorice core surrounded by an Al2O3 shell. The peak positions of localized surface plasmon resonances (LSPRs) are red-shifted exponentially with the increase of the dielectric shell thickness. This is due to the exponential decay of electromagnetic field intensity in the direction perpendicular to the interface. This exponential red-shift depends on the wavelength of the resonance peak instead of the resonance order. In addition, we find that the LSPRs in an Ag nanorice of 60-nm width can be perfectly described by a single linear function. These features make nanorice an ideal platform for sensing applications.
Keywords:  localized surface plasmon resonances      nanorice      core-shell      LSPR sensing  
Received:  20 August 2013      Revised:  18 September 2013      Accepted manuscript online: 
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  42.25.-p (Wave optics)  
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant Nos. 2009CB930700 and 2012YQ12006005), the National Natural Science Foundation of China (Grant Nos. 11134013, 11227407, and 11004237), and the Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W04).
Corresponding Authors:  Xu Hong-Xing     E-mail:  hxxu@iphy.ac.cn
About author:  73.20.Mf; 78.67.-n; 42.25.-p

Cite this article: 

Chen Li (陈立), Wei Hong (魏红), Chen Ke-Qiu (陈克求), Xu Hong-Xing (徐红星) High-order plasmon resonances in an Ag/Al2O3 core/shell nanorice 2014 Chin. Phys. B 23 027303

[1] Kelly K L, Coronado E, Zhao L L and Schatz G C 2003 J. Phys. Chem. B 107 668
[2] Hutter E and Fendler J H 2004 Adv. Mater. 16 1685
[3] Noguez C 2007 J. Phys. Chem. C 111 3806
[4] Shuford K L, Lee J, Odom T W and Schatz G C 2008 J. Phys. Chem. C 112 6662
[5] Wang J F, Li H J, Zhou Z Y, Li X Y, Liu J and Yang H Y 2010 Chin. Phys. B 19 117310
[6] Pelton M, Aizpurua J and Bryant G 2008 Laser & Photon. Rev. 2 136
[7] Willets K A and Van Duyne R P 2007 Ann. Rev. Phys. Chem. 58 267
[8] Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A and Nuzzo R G 2008 Chem. Rev. 108 494
[9] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
[10] Xu H X, Bjerneld E J, Kall M and Borjesson L 1999 Phys. Rev. Lett. 83 4357
[11] Xu H X, Aizpurua J, Kall M and Apell P 2000 Phys. Rev. E 62 4318
[12] Aizpurua J, Bryant G W, Richter L J, de Abajo F J G, Kelley B K and Mallouk T 2005 Phys. Rev. B 71 235420
[13] Muskens O L, Giannini V, Sanchez-Gil J A and Rivas J G 2007 Nano Lett. 7 2871
[14] Kim S, Jin J H, Kim Y J, Park I Y, Kim Y and Kim S W 2008 Nature 453 757
[15] Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M and Gao H J 2011 Chin. Phys. B 20 076103
[16] Krenn J R, Schider G, Rechberger W, Lamprecht B, Leitner A, Aussenegg F R and Weeber J C 2000 Appl. Phys. Lett. 77 3379
[17] Wei H, Reyes-Coronado A, Nordlander P, Aizpurua J and Xu H X 2010 ACS Nano 4 2649
[18] Lee Y H, Chen H J, Xu Q H and Wang J F 2011 J. Phys. Chem. C 115 7997
[19] Lopez-Tejeira F, Paniagua-Dominguez R and Sanchez-Gil J A 2012 ACS Nano 6 8989
[20] Kazuma E and Tatsuma T 2013 J. Phys. Chem. C 117 2435
[21] Stockman M I 2011 Opt. Express 19 22029
[22] Zhang S P, Chen L, Huang Y Z and Xu H X 2013 Nanoscale 5 6985
[23] Vesseur E J R, de Waele R, Kuttge M and Polman A 2007 Nano Lett. 7 2843
[24] Xu H X and Kall M 2002 Sensor Actuat. B-Chem. 87 244
[25] Whitney A V, Elam J W, Zou S L, Zinovev A V, Stair P C, Schatz G C and Van Duyne R P 2005 J. Phys. Chem. B 109 20522
[26] Shanthil M, Thomas R, Swathi R S and Thomas K G 2012 J. Phys. Chem. Lett. 3 1459
[27] Xu H X 2004 Appl. Phys. Lett. 85 5980
[28] Zhao K, Xu H X, Gu B H and Zhang Z Y 2006 J. Chem. Phys. 125 081102
[29] Wang W, Li Z P, Gu B H, Zhang Z Y and Xu H X 2009 ACS Nano 3 3493
[30] Asano S and Yamamoto G 1975 Appl. Opt. 14 29
[31] Jiang S M, Wu D J, Cheng Y and Liu X J 2012 Chin. Phys. B 21 127806
[32] de Abajo F J G and Howie A 2002 Phys. Rev. B 65 115418
[33] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[34] Hagemann H J, Gudat W and Kunz C 1974 Optical Constants from the Far Infrared to the X-ray Region (Hamburg: Deutsches Elektronen-Synchroton DESY)
[35] Dorfmüler J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F and Kern K 2009 Nano Lett. 9 2372
[36] Reed J M, Wang H N, Hu W F and Zou S L 2011 Opt. Lett. 36 4386
[37] Lopez-Tejeira F, Paniagua-Dominguez R, Rodriguez-Oliveros R and Sanchez-Gil J A 2012 New J. Phys. 14 023035
[38] Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar T A, Feldmann J, Nichtl A and Kurzinger K 2003 Nano Lett. 3 935
[39] Maier S A 2007 Plasmonics: Fundamentals and Applications (New York: Springer)
[40] Bryant G W, De Abajo F J G and Aizpurua J 2008 Nano Lett. 8 631
[41] Milligan T A 2005 Modern Antenna Design (New Jersey: John Wiley & Sons)
[42] Novotny L 2007 Phys. Rev. Lett. 98 266802
[43] Alù A and Engheta N 2008 Phys. Rev. Lett. 101 043901
[44] Taminiau T H, Stefani F D and van Hulst N F 2011 Nano Lett. 11 1020
[45] Liang H Y, Rossouw D, Zhao H G, Cushing S K, Shi H L, Korinek A, Xu H X, Rosei F, Wang W Z, Wu N Q, Botton G A and Ma D L 2013 J. Am. Chem. Soc. 135 9616
[46] Chang D E, Sorensen A S, Hemmer P R and Lukin M D 2007 Phys. Rev. B 76 035420
[1] Switchable directional scattering based on spoof core—shell plasmonic structures
Yun-Qiao Yin(殷允桥), Hong-Wei Wu(吴宏伟), Shu-Ling Cheng(程淑玲), and Zong-Qiang Sheng(圣宗强). Chin. Phys. B, 2022, 31(5): 054101.
[2] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[3] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[4] Self-assembly 2D plasmonic nanorice film for surface-enhanced Raman spectroscopy
Tingting Liu(柳婷婷), Chuanyu Liu(刘船宇), Jialing Shi(石嘉玲), Lingjun Zhang(张玲君), Xiaonan Sun(孙晓楠), and Yingzhou Huang(黄映洲). Chin. Phys. B, 2021, 30(11): 117301.
[5] Electrostatic switch of magnetic core-shell in 0-3 type LSMO/PZT composite film
Bo Chen(陈波), Zi-Run Li(李滋润), Chuan-Fu Huang(黄传甫), Yong-Mei Zhang(张永梅). Chin. Phys. B, 2020, 29(9): 097702.
[6] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[7] Sintering reaction and microstructure of MAl (M = Ni, Fe, and Mg) nanoparticles through molecular dynamics simulation
Yuwen Zhang(张宇文), Yonghe Deng(邓永和), Qingfeng Zeng(曾庆丰), Dadong Wen(文大东), Heping Zhao(赵鹤平), Ming Gao(高明), Xiongying Dai(戴雄英), and Anru Wu(吴安如)$. Chin. Phys. B, 2020, 29(11): 116601.
[8] Structural response of aluminum core-shell particles in detonation environment
Qing-Jie Jiao(焦清介), Qiu-Shi Wang(王秋实), Jian-Xin Nie(聂建新), Hong-Bo Pei(裴红波). Chin. Phys. B, 2019, 28(8): 088201.
[9] Impeding anion exchange to improve composition stability of CsPbX3 (X=Cl, Br) nanocrystals through facilely fabricated Cs4PbX6 shell
Zhaohui Shen(申朝晖), Pengjie Song(宋鹏杰), Bo Qiao(乔泊), Jingyue Cao(曹靖玥), Qiongyu Bai(白琼宇), Dandan Song(宋丹丹), Zheng Xu(徐征), Suling Zhao(赵谡玲), Gaoqian Zhang(张高倩), Yuanjun Wu(吴元均). Chin. Phys. B, 2019, 28(8): 086102.
[10] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[11] Enhanced transient photovoltaic characteristics of core-shell ZnSe/ZnS/L-Cys quantum-dot-sensitized TiO2 thin-film
Kui-Ying Li(李葵英), Lun Ren(任伦), Tong-De Shen(沈同德). Chin. Phys. B, 2018, 27(6): 067305.
[12] Controlled generation of cell-laden hydrogel microspheres with core-shell scaffold mimicking microenvironment of tumor
Yuenan Li(李岳南), Miaomiao Hai(海苗苗), Yu Zhao(赵宇), Yalei Lv(吕亚蕾), Yi He(何益), Guo Chen(陈果), Liyu Liu(刘雳宇), Ruchuan Liu(刘如川), Guigen Zhang. Chin. Phys. B, 2018, 27(12): 128703.
[13] Electron transport properties of TiO2 shell on Al2O3 core in dye-sensitized solar cells
Dongmei Xie(解东梅), Xiaowen Tang(唐小文), Yuan Lin(林原), Pin Ma(马品), Xiaowen Zhou(周晓文). Chin. Phys. B, 2018, 27(1): 017804.
[14] Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires
Hui Sun(孙慧), Bing-Can Liu(刘炳灿), Qiang Tian(田强). Chin. Phys. B, 2017, 26(9): 097302.
[15] Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation
Chao Li(李超), Jun-Jie Sun(孙俊杰), Duo Chen(陈铎), Guang-Bing Han(韩广兵), Shu-Yun Yu(于淑云), Shi-Shou Kang(康仕寿), Liang-Mo Mei(梅良模). Chin. Phys. B, 2016, 25(8): 088201.
No Suggested Reading articles found!