Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 080302    DOI: 10.1088/1674-1056/adeb5d
GENERAL Prev   Next  

Optimal convex approximations of qubit states based on l1-norm of coherence

Li-Qiang Zhang(张立强)1,†, Yan-Dong Du(杜彦东)1, and Chang-Shui Yu(于长水)2,3,‡
1 School of Physics and Electronic Engineering, Shanxi Normal University, Taiyuan 030031, China;
2 School of Physics, Dalian University of Technology, Dalian 116024, China;
3 DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China
Abstract  Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory, offering critical guidance for experimental implementations. In this paper, we embark on an in-depth exploration of the use of a quantum state prepared by the convex combination of given qubit states to optimally approximate the ${l_1}$-norm of coherence of the target quantum state, striving to make the prepared state and the target state as similar as possible. Here, we present the analytical solution for the optimal distance for any $N$ given quantum states. We find that the optimal approximation problem for any $N>4$ quantum states can be transformed into an optimal approximation problem for no more than four quantum states, which not only significantly streamlines the problem but also proves advantageous for laboratories in terms of material conservation. Ultimately, a one-to-one comparison between the analytical and numerical solutions verifies the effectiveness of our approach.
Keywords:  quantum information processing      quantum resource theory      quantum coherence      optimal convex approximations  
Received:  16 April 2025      Revised:  22 June 2025      Accepted manuscript online:  03 July 2025
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Fd (Algebraic methods)  
Fund: Project supported by the Fundamental Research Projects of Shanxi Province (Grant No. 202203021222225), the National Natural Science Foundation of China (Grant Nos. 12175029, 12011530014, and 11775040), and the Key Research and Development Project of Liaoning Province (Grant No. 2020JH2/10500003).
Corresponding Authors:  Li-Qiang Zhang, Chang-Shui Yu     E-mail:  zhangliqiang@sxnu.edu.cn;ycs@dlut.edu.cn

Cite this article: 

Li-Qiang Zhang(张立强), Yan-Dong Du(杜彦东), and Chang-Shui Yu(于长水) Optimal convex approximations of qubit states based on l1-norm of coherence 2025 Chin. Phys. B 34 080302

[1] Chitambar E and Gour G 2019 Rev. Mod. Phys. 91 025001
[2] Lami L, Regula B, Wang X, Nichols R, Winter A and Adesso G 2018 Phys. Rev. A 98 022335
[3] Liu Z W, Bu K F and Takagi R 2019 Phys. Rev. Lett. 123 020401
[4] Halpern N Y, Kothakonda N B T, Haferkamp J, Munson A, Eisert J and Faist P 2022 Phys. Rev. A 106 062417
[5] Peres A and Terno D R 2004 Rev. Mod. Phys. 76 93
[6] Rozema, L A, Mahler D H, Hayat A, Turner P S and Steinberg A M 2014 Phys. Rev. Lett. 113 160504
[7] Sánchez R, Samuelsson P and Potts P P 2019 Phys. Rev. Research 1 033066
[8] Zhang X Y, Lu X M, Liu J, DingWK andWang X G 2023 Chin. Phys. A 107 012414
[9] Zeng Y X, Zhou Z Y, Rinaldi E, Gneiting C and Nori F 2023 Phys. Rev. Lett. 131 050601
[10] Pan J W 2024 Acta Phys. Sin. 73 010301 (in Chinese)
[11] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275
[12] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[13] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin B A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[14] Martini F D 1998 Phys. Rev. Lett. 81 2842
[15] Shen Z X, Wang K K and Fei S M 2023 Chin. Phys. B 32 120303
[16] Zhang Y, Liu D and Long G L 2007 Chin. Phys. B 16 324
[17] Plávala M and Gühne O 2024 Phys. Rev. Lett. 132 100201
[18] Olsthoorn B 2023 Phys. Rev. B 107 115174
[19] DaiWP, He K and Hou J 2024 Acta Phys. Sin. 73 040303 (in Chinese)
[20] Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G and Gao J R 2024 Acta Phys. Sin. 73 074203 (in Chinese)
[21] Sipe J E and Arkani-Hamed N 1992 Phys. Rev. A 46 2317
[22] Schumacher B and Westmoreland M D 1998 Phys. Rev. Lett. 80 5695
[23] Baumgratz T, Cramer M, and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[24] Sperling J and Walmsley I A 2018 Phys. Rev. A 97 062327
[25] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301(R)
[26] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
[27] Luo S L and Sun Y 2017 Phys. Rev. A 96 022130
[28] Yu C S 2017 Phys. Rev. A 95 042337
[29] Xu J W 2020 Chin. Phys. B 29 010301
[30] Zhu L T, Zhu X Y, Yue Z C, Tu T and Li C F 2025 Chin. Phys. B 34, 030302
[31] Song X K, Huang Y Q, Ling J J, and Yung M H 2018 Phys. Rev. A 98 050302(R)
[32] Prech K, Potts P P and Landi G T 2025 Phys. Rev. Lett. 134 020401
[33] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[34] Cavalcanti D, Aolita L, Boixo S, Modi K, Piani M and Winter A 2011 Phys. Rev. A 83 032324
[35] Li B, Zhu C L, Liang X B, Ye B L and Fei S M 2021 Phys. Rev. A 104 012428
[36] Luo S L and Fu S S 2010 Phys. Rev. A 82 034302
[37] Luo S L 2008 Phys. Rev. A 77 042303
[38] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[39] Guo Y, Huang L Z and Zhang Y 2021 Quantum Sci. Technol. 6 045028
[40] Zhang J, He K, Zhang H and Yu C S 2023 Chin. Phys. B 32 090301
[41] Quesada R and Sanpera A 2014 Phys. Rev. A 89 052319
[42] Wellens T and Kus M 2001 Phys. Rev. A 64 052302
[43] Lewenstein M and Sanpera A 1998 Phys. Rev. Lett. 80 2261
[44] Girolami D, Tufarelli T and Adesso G 2013 Phys. Rev. Lett. 110 240402
[45] Yu C S and Zhao H Q 2011 Phys. Rev. A 84 062123
[46] Wang W and Takeda M 2006 Phys. Rev. Lett. 96 223904
[47] Kim S, Xiong C H, Kumar A, Zhang G J and Wu J D 2021 Phys. Rev. A 104 012404
[48] Liang X B, Li B and Fei S M 2019 Phys. Rev. A 99 016301
[49] Sacchi M F 2017 Phys. Rev. A 96 042325
[50] Sacchi M F and Sacchi T 2017 Phys. Rev. A 96 032311
[51] Li B, Liang X B and Fei S M 2023 Results Phys. 49 106510
[52] Liang X B, Li B, Huang L, Ye B L, Fei S M and Huang S X 2020 Phys. Rev. A 101 062106
[53] Zhang L Q, Yu D H and Yu C S 2021 Phys. Lett. A 398 127286
[54] Zhang L Q, Yu D H and Yu C S 2021 J. Phys. A. 54 085205
[55] Shang J W and Gühne O 2018 Phys. Rev. Lett. 120 050506
[56] Liang X B, Li B, Ye B L and Fei S M 2018 Quantum Inf. Process. 17 185
[57] Zhang L Q, Zhou N N and Yu C S 2022 Ann. Phys. (Berlin) 534 2100407
[58] Zhou H Q, Gao T and Yan F L 2022 Europhys. Lett. 136 20002
[59] Shao L H, Xi Z J, Fan H and Li Y M 2015 Phys. Rev. A 91 042120
[60] Fan Y J, Li N and Luo S L 2023 Phys. Rev. A 108 052406
[61] Kim S, Xiong C H, Luo S L, Kumar A and Wu J D 2023 Phys. Rev. A 108 012416
[62] Liu C L and Sun C P 2023 Phys. Rev. Research 4 023199
[63] Yu D H and Yu C S 2022 Phys. Rev. A 106 052432
[64] Chen J J, Xu K, Ren L H, Zhang Y R and Fan H 2024 Phys. Rev. A 110 022434
[65] Dong D D, Wei G B, Song X K, Wang D and Ye L 2023 Phys. Rev. A 106 042415
[66] Steinitz E 1913 J. Reine Angew. Math. 143 128
[67] Carathéodory C 1911 Rend. Circ. Matem. Palermo 32 193
[1] Established conversions for hybrid entangled states assisted by error-predicted parity-discriminated devices
Fang-Fang Du(杜芳芳), Zhi-Guo Fan(范志国), Xue-Mei Ren(任雪梅), Ming Ma(马明), and Wen-Yao Liu(刘文耀). Chin. Phys. B, 2025, 34(1): 010303.
[2] Quantum block coherence with respect to projective measurements
Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Chin. Phys. B, 2024, 33(8): 080308.
[3] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[4] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[5] Quantum synchronization with correlated baths
Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2024, 33(2): 020306.
[6] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[7] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[8] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[9] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[10] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[11] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[12] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[13] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[14] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[15] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
No Suggested Reading articles found!