|
|
|
Optimal convex approximations of qubit states based on l1-norm of coherence |
| Li-Qiang Zhang(张立强)1,†, Yan-Dong Du(杜彦东)1, and Chang-Shui Yu(于长水)2,3,‡ |
1 School of Physics and Electronic Engineering, Shanxi Normal University, Taiyuan 030031, China; 2 School of Physics, Dalian University of Technology, Dalian 116024, China; 3 DUT-BSU Joint Institute, Dalian University of Technology, Dalian 116024, China |
|
|
|
|
Abstract Determining the minimal distance between the target state and the convex combination of given states is a fundamental problem in quantum resource theory, offering critical guidance for experimental implementations. In this paper, we embark on an in-depth exploration of the use of a quantum state prepared by the convex combination of given qubit states to optimally approximate the ${l_1}$-norm of coherence of the target quantum state, striving to make the prepared state and the target state as similar as possible. Here, we present the analytical solution for the optimal distance for any $N$ given quantum states. We find that the optimal approximation problem for any $N>4$ quantum states can be transformed into an optimal approximation problem for no more than four quantum states, which not only significantly streamlines the problem but also proves advantageous for laboratories in terms of material conservation. Ultimately, a one-to-one comparison between the analytical and numerical solutions verifies the effectiveness of our approach.
|
Received: 16 April 2025
Revised: 22 June 2025
Accepted manuscript online: 03 July 2025
|
|
PACS:
|
03.67.-a
|
(Quantum information)
|
| |
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
| |
03.65.Fd
|
(Algebraic methods)
|
|
| Fund: Project supported by the Fundamental Research Projects of Shanxi Province (Grant No. 202203021222225), the National Natural Science Foundation of China (Grant Nos. 12175029, 12011530014, and 11775040), and the Key Research and Development Project of Liaoning Province (Grant No. 2020JH2/10500003). |
Corresponding Authors:
Li-Qiang Zhang, Chang-Shui Yu
E-mail: zhangliqiang@sxnu.edu.cn;ycs@dlut.edu.cn
|
Cite this article:
Li-Qiang Zhang(张立强), Yan-Dong Du(杜彦东), and Chang-Shui Yu(于长水) Optimal convex approximations of qubit states based on l1-norm of coherence 2025 Chin. Phys. B 34 080302
|
[1] Chitambar E and Gour G 2019 Rev. Mod. Phys. 91 025001 [2] Lami L, Regula B, Wang X, Nichols R, Winter A and Adesso G 2018 Phys. Rev. A 98 022335 [3] Liu Z W, Bu K F and Takagi R 2019 Phys. Rev. Lett. 123 020401 [4] Halpern N Y, Kothakonda N B T, Haferkamp J, Munson A, Eisert J and Faist P 2022 Phys. Rev. A 106 062417 [5] Peres A and Terno D R 2004 Rev. Mod. Phys. 76 93 [6] Rozema, L A, Mahler D H, Hayat A, Turner P S and Steinberg A M 2014 Phys. Rev. Lett. 113 160504 [7] Sánchez R, Samuelsson P and Potts P P 2019 Phys. Rev. Research 1 033066 [8] Zhang X Y, Lu X M, Liu J, DingWK andWang X G 2023 Chin. Phys. A 107 012414 [9] Zeng Y X, Zhou Z Y, Rinaldi E, Gneiting C and Nori F 2023 Phys. Rev. Lett. 131 050601 [10] Pan J W 2024 Acta Phys. Sin. 73 010301 (in Chinese) [11] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett. 78 2275 [12] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [13] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin B A and Wootters W K 1996 Phys. Rev. Lett. 76 722 [14] Martini F D 1998 Phys. Rev. Lett. 81 2842 [15] Shen Z X, Wang K K and Fei S M 2023 Chin. Phys. B 32 120303 [16] Zhang Y, Liu D and Long G L 2007 Chin. Phys. B 16 324 [17] Plávala M and Gühne O 2024 Phys. Rev. Lett. 132 100201 [18] Olsthoorn B 2023 Phys. Rev. B 107 115174 [19] DaiWP, He K and Hou J 2024 Acta Phys. Sin. 73 040303 (in Chinese) [20] Hao J C, Du P L, Sun H X, Liu K, Zhang J, Yang R G and Gao J R 2024 Acta Phys. Sin. 73 074203 (in Chinese) [21] Sipe J E and Arkani-Hamed N 1992 Phys. Rev. A 46 2317 [22] Schumacher B and Westmoreland M D 1998 Phys. Rev. Lett. 80 5695 [23] Baumgratz T, Cramer M, and Plenio M B 2014 Phys. Rev. Lett. 113 140401 [24] Sperling J and Walmsley I A 2018 Phys. Rev. A 97 062327 [25] Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301(R) [26] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112 [27] Luo S L and Sun Y 2017 Phys. Rev. A 96 022130 [28] Yu C S 2017 Phys. Rev. A 95 042337 [29] Xu J W 2020 Chin. Phys. B 29 010301 [30] Zhu L T, Zhu X Y, Yue Z C, Tu T and Li C F 2025 Chin. Phys. B 34, 030302 [31] Song X K, Huang Y Q, Ling J J, and Yung M H 2018 Phys. Rev. A 98 050302(R) [32] Prech K, Potts P P and Landi G T 2025 Phys. Rev. Lett. 134 020401 [33] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503 [34] Cavalcanti D, Aolita L, Boixo S, Modi K, Piani M and Winter A 2011 Phys. Rev. A 83 032324 [35] Li B, Zhu C L, Liang X B, Ye B L and Fei S M 2021 Phys. Rev. A 104 012428 [36] Luo S L and Fu S S 2010 Phys. Rev. A 82 034302 [37] Luo S L 2008 Phys. Rev. A 77 042303 [38] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501 [39] Guo Y, Huang L Z and Zhang Y 2021 Quantum Sci. Technol. 6 045028 [40] Zhang J, He K, Zhang H and Yu C S 2023 Chin. Phys. B 32 090301 [41] Quesada R and Sanpera A 2014 Phys. Rev. A 89 052319 [42] Wellens T and Kus M 2001 Phys. Rev. A 64 052302 [43] Lewenstein M and Sanpera A 1998 Phys. Rev. Lett. 80 2261 [44] Girolami D, Tufarelli T and Adesso G 2013 Phys. Rev. Lett. 110 240402 [45] Yu C S and Zhao H Q 2011 Phys. Rev. A 84 062123 [46] Wang W and Takeda M 2006 Phys. Rev. Lett. 96 223904 [47] Kim S, Xiong C H, Kumar A, Zhang G J and Wu J D 2021 Phys. Rev. A 104 012404 [48] Liang X B, Li B and Fei S M 2019 Phys. Rev. A 99 016301 [49] Sacchi M F 2017 Phys. Rev. A 96 042325 [50] Sacchi M F and Sacchi T 2017 Phys. Rev. A 96 032311 [51] Li B, Liang X B and Fei S M 2023 Results Phys. 49 106510 [52] Liang X B, Li B, Huang L, Ye B L, Fei S M and Huang S X 2020 Phys. Rev. A 101 062106 [53] Zhang L Q, Yu D H and Yu C S 2021 Phys. Lett. A 398 127286 [54] Zhang L Q, Yu D H and Yu C S 2021 J. Phys. A. 54 085205 [55] Shang J W and Gühne O 2018 Phys. Rev. Lett. 120 050506 [56] Liang X B, Li B, Ye B L and Fei S M 2018 Quantum Inf. Process. 17 185 [57] Zhang L Q, Zhou N N and Yu C S 2022 Ann. Phys. (Berlin) 534 2100407 [58] Zhou H Q, Gao T and Yan F L 2022 Europhys. Lett. 136 20002 [59] Shao L H, Xi Z J, Fan H and Li Y M 2015 Phys. Rev. A 91 042120 [60] Fan Y J, Li N and Luo S L 2023 Phys. Rev. A 108 052406 [61] Kim S, Xiong C H, Luo S L, Kumar A and Wu J D 2023 Phys. Rev. A 108 012416 [62] Liu C L and Sun C P 2023 Phys. Rev. Research 4 023199 [63] Yu D H and Yu C S 2022 Phys. Rev. A 106 052432 [64] Chen J J, Xu K, Ren L H, Zhang Y R and Fan H 2024 Phys. Rev. A 110 022434 [65] Dong D D, Wei G B, Song X K, Wang D and Ye L 2023 Phys. Rev. A 106 042415 [66] Steinitz E 1913 J. Reine Angew. Math. 143 128 [67] Carathéodory C 1911 Rend. Circ. Matem. Palermo 32 193 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|