Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080308    DOI: 10.1088/1674-1056/ad50c1
GENERAL Prev   Next  

Quantum block coherence with respect to projective measurements

Pu Wang(王璞)1, Zhong-Yan Li(李忠艳)2, and Hui-Xian Meng(孟会贤)2,†
1 School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China;
2 School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
Abstract  Quantum coherence serves as a defining characteristic of quantum mechanics, finding extensive applications in quantum computing and quantum communication processing. This study explores quantum block coherence in the context of projective measurements, focusing on the quantification of such coherence. Firstly, we define the correlation function between the two general projective measurements $P$ and $Q$, and analyze the connection between sets of block incoherent states related to two compatible projective measurements $P$ and $Q$. Secondly, we discuss the measure of quantum block coherence with respect to projective measurements. Based on a given measure of quantum block coherence, we characterize the existence of maximal block coherent states through projective measurements. This research integrates the compatibility of projective measurements with the framework of quantum block coherence, contributing to the advancement of block coherence measurement theory.
Keywords:  quantum coherence      compatibility      projective measurement      quantum block coherence  
Received:  02 April 2024      Revised:  21 May 2024      Accepted manuscript online: 
PACS:  03.65.Aa (Quantum systems with finite Hilbert space)  
  03.67.-a (Quantum information)  
Fund: This research was partially supported by the National Natural Science Foundations of China (Grant No. 11901317), the China Postdoctoral Science Foundation (Grant No. 2020M680480), the Fundamental Research Funds for the Central Universities (Grant No. 2023MS078), and the Beijing Natural Science Foundation (Grant No. 1232021).
Corresponding Authors:  Hui-Xian Meng     E-mail:  huixianmenghd@ncepu.edu.cn

Cite this article: 

Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤) Quantum block coherence with respect to projective measurements 2024 Chin. Phys. B 33 080308

[1] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[2] Åberg J 2014 Phys. Rev. Lett. 113 150402
[3] Southwell K 2008 Nature 453 1003
[4] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[5] Barbosa G A 1998 Phys. Rev. A 58 332
[6] Steane A 1998 Rep. Prog. Phys. 61 117
[7] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[8] Nielsen M A and Chuang I L 2011 Contem. Phys. 52 604
[9] Rastegin A E 2018 Quantum Inf. Proc. 17 179
[10] Hillery M 2016 Phys. Rev. A 93 012111
[11] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[12] Lloyd S 2011 J. Phys. Conf. Ser. 302 012037
[13] Lostaglio M, Jennings D and Rudolph T 2015 Nat. Commun. 6 6383
[14] Brandão F, Horodecki M, Ng N, Oppenheim J and Wehner S 2015 Proc. Natl. Acad. Sci. USA 112 3275
[15] Plenio M B and Huelga S F 2008 New J. Phys. 1 113019
[16] Narasimhachar V and Gour G 2015 Nat. Commun. 6 7689
[17] Åberg J 2006 arXiv:quant-ph/0612146
[18] Bischof F, Kampermann H and Dagmar B 2019 Phys. Rev. Lett. 123 110402
[19] Bischof F, Kampermann H and Dagmar B 2019 Phys. Rev. A 103 032429
[20] Davide G 2014 Phys. Rev. Lett. 113 170401
[21] Cheng S M and Hall M J W 2015 Phys. Rev. A 92 042101
[22] Heinosaari T, Kiukas J and Reitzner D 2015 Phys. Rev. A 92 022115
[23] Temistocles T, Rabelo R and Cunha M T 2019 Phys. Rev. A 99 042120
[24] Ravi K 2018 arXiv:1403.0470
[quant-ph]
[25] Yu X Q, Xiao S and Cao H X 2020 Sci. Sin. Phys. Mech. Astron. 50 070001 (in Chinese)
[26] Wang P, Guo Z H and Cao H X 2022 Entropy 24 659
[27] Brierley S and Weigert S 2010 arXiv:0907.4097
[math-ph]
[28] Xu J W, Shao L H and Fei S M 2020 Phys. Rev. A 102 012411
[29] Luo S L and Sun Y 2017 Phys. Rev. A 96 022136
[30] Wu W J 1984 J. Sys. Sci. Math. Scis. 4 207 (in Chinese)
[31] Wu W J 1985 Sci. Bull. 12 881 (in Chinese)
[32] Wang D K and Zhang Y 2007 Sci. Chin. A: Math. 50 1441
[1] Spatial quantum coherent modulation with perfect hybrid vector vortex beam based on atomic medium
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Xin-Qi Yang(杨鑫琪), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Hong Gao(高宏), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 024204.
[2] Quantum synchronization with correlated baths
Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2024, 33(2): 020306.
[3] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[4] The application of quantum coherence as a resource
Si-Yuan Liu(刘思远) and Heng Fan(范桁). Chin. Phys. B, 2023, 32(11): 110304.
[5] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[6] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[9] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[10] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[11] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[12] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[13] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[14] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[15] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
No Suggested Reading articles found!