1 School of Physical Science and Intelligent Engineering, Jining University, Qufu 273155, China; 2 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China
Abstract Quantum coherence and discord are two kinds of manifestations of nonclassicality. By calculating the coherence and discord in the specific bipartite quantum systems, we show quantitative connections between the coherence and the discord in the bipartite quantum systems created from local systems with the help of incoherent operations. We show that the coherence bounds the dynamical discord, and under particular conditions of the initial quantum states, the coherence of single systems is equal to the dynamical discord. We extend these results to the multipartite quantum systems.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675115 and 11704221).
Corresponding Authors:
Lian-Wu Yang
E-mail: wlyanglw@163.com
Cite this article:
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰) Quantifying coherence with dynamical discord 2021 Chin. Phys. B 30 120304
[1] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett.113 140401 [2] Aberg J 2014 Phys. Rev. Lett.113 150402 [3] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys.89 041003 [4] Hu M L, Hu X, Wang J, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep.762 1 [5] Ollivier H and Zurek W H 2001 Phys. Rev. Lett.88 017901 [6] Luo S L 2008 Phys. Rev. A77 022301 [7] Rulli C C and Sarandy M S 2011 Phys. Rev. A84 042109 [8] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett.104 080501 [9] Modi K, Brodutch A, Cable H, Paterek T and Vedral V 2012 Rev. Mod. Phys.84 1655 [10] Dakic B, Lipp Y O, Ma X, Ringbauer M, Kropatschek S, Barz S, Paterek T, Vedral V, Zeilinger A, Brukner C and Walthe P 2012 Nat. Phys.8 666 [11] Gu M, Chrzanowski H M, Assad S M, Symul T, Modi K, Ralph T C, Vedral V and Lam P K 2012 Nat. Phys.8 671 [12] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett.101 200501 [13] Xi Z, Li Y and Fan H 2015 Sci. Rep.5 10922 [14] Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A92 022112 [15] Hu M L and Fan H 2017 Phys. Rev. A95 052106 [16] Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A94 022329 [17] Piani M, Gharibian S, Adesso G, Calsamiglia J, Horodecki, P and Winter, A 2011 Phys. Rev. Lett.106 220403 [18] Gharibian S, Pian, M, Adesso G, Calsamiglia J and Horodecki P 2011 Int. J. Quantum. Inform.09 1701 [19] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett.115 020403 [20] Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett.116 160407 [21] Chitambar E, Streltsov A, Rana S, Bera M N, Adesso G and Lewenstein M 2016 Phys. Rev. Lett.116 070402 [22] Killoran N, Steinhoff F E and Plenio M B 2016 Phys. Rev. Lett.116 080402 [23] Xi Y, Zhang T, Zheng Z J, Li X and Fei S M 2019 Phys. Rev. A100 022310 [24] Young J D and Auyuanet1 A 2020 Quantum Inf. Process.19 398 [25] Feldman V, Maziero J and Auyuanet A 2017 Quantum Inf. Process.16 128 [26] Yang L W and Xia Y J 2017 Chin. Phys. B26 080302 [27] Wu K D, Hou Z, Zhong H S, Yuan Y, Xiang G Y, Li C F and Guo G C 2017 Optica4 454 [28] Wu K D, Hou Z, Zhao Y Y, Xiang G Y, Li C F, Guo G C, Ma J, He Q Y, Thompson J and Gu M 2018 Phys. Rev. Lett.121 050401 [29] Qiao L F, Streltsov A, Gao J, Rana S, Ren R J, Jiao Z Q, Hu C Q, Xu X Y, Wang C Y, Tang H, Yang A L, Ma Z H, Lewenstein M and Jin X M 2018 Phys. Rev. A98 052351 [30] Wang W, Han J, Yadin B, Ma Y, Ma J, Cai W, Xu Y, Hu L, Wang H, SongY P, Gu M and Sun L 2019 Phys. Rev. Lett.123 220501 [31] Vedral V, Plenio M B, Rippin M A and Knight P L 1997 Phys. Rev. Lett.78 2275 [32] Horodecki M, Horodecki P and Oppenheim J 2003 Phys. Rev. A67 062104 [33] Gour G and Spekkens R W 2008 New J. Phys.10 033023 [34] Brandão F G, Horodecki M, Oppenheim J, Renes J M and Spekkens R W 2013 Phys. Rev. Lett.111 250404 [35] Grudka A, Horodecki K, Horodecki M, Horodecki P, Horodecki R, Joshi P, Kłobus W and Wójcik A 2014 Phys. Rev. Lett.112 120401 [36] Theurer T, Satyajit S and Plenio M B 2020 Phys. Rev. Lett.125 130401 [37] Gour G, Marvian I and Spekkens R W 2009 Phys. Rev. A80 012307 [38] Brandão F G and Gour G 2015 Phys. Rev. Lett.115 070503 [39] Berta M and Majenz C 2018 Phys. Rev. Lett.121 190503 [40] Groisman B, Popescu S and Winter A 2005 Phys. Rev. A72 032317 [41] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press) [42] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys.89 041003 [43] Horodecki R and Horodecki M 1996 Phys. Rev. A.54 1838 [44] Werner R F 1989 Phys. Rev. A.40 4277 [45] Fedrizzi A 2013 Phys. Rev. Lett.111 230504 [46] Adesso G, Ambrosio V, Nagali E, Piani M and Sciarrino F 2014 Phys. Rev. Lett.112 140501 [47] Kay A 2012 Phys. Rev. Lett.109 080503 [48] Vedral V and Plenio M B 1998 Phys. Rev. A57 1619 [49] Dakić B, Vedral V and Brukner Č 2010 Phys. Rev. Lett.105 190502 [50] Ren L H, Gao M, Ren J, Wang Z D and Bai Y K 2020 arXiv: 2004.03995v2 [51] Rains E 1999 Phys. Rev. A60 179 [52] Szalay S 2015 Phys. Rev. A92 042329
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.