Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010302    DOI: 10.1088/1674-1056/ac728b
GENERAL Prev   Next  

Enhancement of charging performance of quantum battery via quantum coherence of bath

Wen-Li Yu(于文莉)1, Yun Zhang(张允)2, Hai Li(李海)2,†, Guang-Fen Wei(魏广芬)2, Li-Ping Han(韩丽萍)3, Feng Tian(田峰)4, and Jian Zou(邹建)4,‡
1 School of Computer Science and Technology, Shandong Technology and Business University, Yantai 264005, China;
2 School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China;
3 School of Science, Tianjin University of Technology, Tianjin 300384, China;
4 School of Physics, Beijing Institute of Technology, Beijing 100081, China
Abstract  An open quantum battery (QB) model of a single qubit system charging in a coherent auxiliary bath (CAB) consisting of a series of independent coherent ancillae is considered. According to the collision charging protocol we derive a quantum master equation and obtain the analytical solution of QB in a steady state. We find that the full charging capacity (or the maximal extractable work (MEW)) of QB, in the weak QB-ancilla coupling limit, is positively correlated with the coherence magnitude of ancilla. Combining with the numerical simulations we compare with the charging properties of QB at finite coupling strength, such as the MEW, average charging power and the charging efficiency, when considering the bath to be a thermal auxiliary bath (TAB) and a CAB, respectively. We find that when the QB with CAB, in the weak coupling regime, is in fully charging, both its capacity and charging efficiency can go beyond its classical counterpart, and they increase with the increase of coherence magnitude of ancilla. In addition, the MEW of QB in the regime of relative strong coupling and strong coherent magnitude shows the oscillatory behavior with the charging time increasing, and the first peak value can even be larger than the full charging MEW of QB. This also leads to a much larger average charging power than that of QB with TAB in a short-time charging process. These features suggest that with the help of quantum coherence of CAB it becomes feasible to switch the charging schemes between the long-time slow charging protocol with large capacity and high efficiency and the short-time rapid charging protocol with highly charging power only by adjusting the coupling strength of QB-ancilla. This work clearly demonstrates that the quantum coherence of bath can not only serve as the role of "fuel" of QB to be utilized to improve the QB's charging performance but also provide an alternative way to integrate the different charging protocols into a single QB.
Keywords:  quantum battery      quantum coherence      maximal extractable work      charging power  
Received:  26 January 2022      Revised:  12 May 2022      Accepted manuscript online:  24 May 2022
PACS:  03.65.-w (Quantum mechanics)  
  05.70.-a (Thermodynamics)  
  64.70.qd (Thermodynamics and statistical mechanics)  
  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775019 and 62173213), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011FL009), and the Shandong Provincial Science and Technology Support Program of Youth Innovation Team in Colleges (Grant Nos. 2019KJN041 and 2020KJN005).
Corresponding Authors:  Hai Li, Jian Zou     E-mail:  lihai@sdtbu.edu.cn;zoujian@bit.edu.cn

Cite this article: 

Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建) Enhancement of charging performance of quantum battery via quantum coherence of bath 2023 Chin. Phys. B 32 010302

[1] Kieu T D 2004 Phys. Rev. Lett. 93 140403
[2] Levy A and Kosloff R 2012 Phys. Rev. Lett. 108 070604
[3] Carrega M, Sassetti M and Weiss U 2019 Phys. Rev. A 99 062111
[4] Brunner N, Linden N, Popescu S and Skrzypczyk P 2012 Phys. Rev. E 85 051117
[5] Quan H T, Liu Y, Sun C P and Nori F 2007 Phys. Rev. E 76 031105
[6] Pekola J P 2015 Nat. Phys. 11 118
[7] Wang C, Wang L Q and Ren J 2021 Chin. Phys. B 30 030506
[8] Li H, Zou J, Shao B, Chen Y and Hua Z 2019 Acta Phys. Sin. 68 040201 (in Chinese)
[9] Li B M, Hu M L and Fan H 2021 Chin. Phys. B 30 070307
[10] Wang Z A, Peng Y, Yu D P and Fan H 2022 Chin. Phys. B 31 040309
[11] Goold J, Huber M, Riera A, del Rio L and Skrzypczyk P 2016 J. Phys. A 49 143001
[12] Vinjanampathy S and Anders J 2016 Contemp. Phys 57 545
[13] Scully M O, Zubairy M S, Agarwal G S and Walther H 2003 Science 299 862
[14] Roßnagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
[15] Joulain K, Drevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601
[16] Ivan H and Serra R M 2018 Phys. Rev. E 97 062105
[17] Li L, Zou J, Li H, Xu B M, Wang Y M and Shao B 2018 Phys. Rev. E 97 022111
[18] Yu W L, Li T, Li H, Zhang Y, Zou J and Wang Y D 2021 Entropy 23 1183
[19] Andolina G M, Keck M, Mari A and Campisi M 2019 Phys. Rev. Lett. 122 047702
[20] Santos A C, Saguia A and Sarandy M S 2020 Phys. Rev. E 101 062114
[21] Le T P, Levinsen J, Modi K, Parish M M and Pollock F A 2018 Phys Rev. A 97 022106
[22] Ferraro D, Campisi M, Andolina G M and Pellegrini V 2018 Phys. Rev. Lett. 120 117702
[23] Chen J, Zhan L, Shao L, Zhang X and Zhang Y 2020 Ann. Phys. 532 1900487
[24] Caravelli F, Coulter-De Wit G, García-Pintos L P and Hamma A 2020 Phys. Rev. Research 2 023095
[25] Campaioli F, Pollock F A, Binder F C, Céleri L and Goold J 2017 Phys. Rev. Lett. 118 150601
[26] Zhang Y Y, Yang T R, Fu L and Wang X 2019 Phys. Rev. E 99 052106
[27] Andolina G M, Farina D, Mari A, Pellegrini V, Giovannetti V and Polini M 2018 Phys. Rev. B 98 205423
[28] Andolina G M, Keck M, Mari A, Giovannetti V and Polini M 2019 Phys. Rev. B 99 205437
[29] Carrega M, Crescente A, Ferraro D and Sassetti M 2020 New J. Phys. 22 083085
[30] Seah S, Perarnau-Llobe T M, Haack G, Brunner N and Nimmrichter S 2021 Phys. Rev. Lett. 127 100601
[31] Bhattacharjee S and Dutta A 2021 Eur. Phys. J. B 94 239
[32] Alicki R and Fannes M 2013 Phys. Rev. E 87 042123
[33] Chetcuti W J, Sanavio C, Lorenzo S and Apollaro T J G 2020 New J. Phys. 22 033030
[34] Juliá-Farré S, Salamon T, Riera A, Bera M N and Lewenstein M 2020 Phys. Rev. Res. 2 023113 Juliá-Farré S, Salamon T, Riera A, Bera M N and Lewenstein M 2020 Phys. Rev. Res. 22 023113
[35] Ghosh S, Chanda T and Sen A 2020 Phys. Rev. A 101 032115
[36] Ghosh S, Chanda T, Mal S and Sen A 2021 Phys. Rev. A 104 032207
[37] Huangfu Y and Jing J 2021 Phys. Rev. E 104 024129
[38] Zhao F, Dou F Q and Zhao Q 2021 Phys. Rev. A 103 033715
[39] Binder F C, Vinjanampathy S, Modi K and Goold J 2015 New J. Phys. 17 075015
[40] Crescente A, Carrega M, Sassetti M and Ferraro D 2020 New J. Phys. 22 063057
[41] Bai S Y and An J H 2020 Phys. Rev. A 102 060201
[42] Ferraro D, Campisi M, Andolina G M, Pellegrini V and Polini M 2018 Phys. Rev. Lett. 120 117702
[43] Rossini D, Andolina G M and Polini M 2019 Phys. Rev. B 100 115142
[44] Rossini D, Andolina G M, Rosa D, Carrega M and Polini M 2020 Phys. Rev. Lett. 125 236402
[45] Dou F Q, Lu Y Q, Wang Y J and Sun J A 2022 Phys. Rev. B 105 115405
[46] Cakmak B 2020 Phys. Rev. E 102 042111
[47] Piccione N, Militello B, Napoli A and Bellomo B 2019 Phys. Rev. E 100 032143
[48] Skrzypczyk P, Short A J and Popescu S 2014 Nat. Commun. 5 4185
[49] Delmonte A, Crescente A, Carrega M, Ferraro D and Sassetti M 2021 Entropy 23 612
[50] Caravelli F, Yan B, García-Pintos L P and Hamma A 2021 Quantum 5 505
[51] García-Pintos L P, Hamma A and Del Campo A 2020 Phys. Rev. Lett. 125 040601
[52] Peng L, He W B, Chesi S, Lin H Q and Guan X W 2021 Phys. Rev. A 103 052220
[53] Allahverdyan A E, Balian R and Nieuwenhuizen T M 2004 Europhys. Lett. 67 565
[54] Barra F 2019 Phys. Rev. Lett. 122 210601
[55] Farina D, Andolina G M, Mari A, Polini M and Giovannetti V 2019 Phys. Rev. B 99 035421
[56] Chang W, Yang T R, Dong H, Fu L, Wang X and Zhang Y Y 2021 New J. Phys. 23 103026
[57] Liu J and Segal D 2021 arXiv:2104.06522v1 [quant-ph]
[58] Gherardini S, Campaioli F, Caruso F and Binder F C 2020 Phys. Rev. Res. 2 013095
[59] Seah S, Perarnau-Llobet M, Haack G, Brunner N and Nimmrichter S 2021 Phys. Rev. Lett. 127 100601
[60] Dou F Q, Wang Y J and Sun J A 2022 Front. Phys. 17 31503
[61] Campbell S and Vacchini B 2021 Europhys. Lett 133 60001
[62] Scarani V, Ziman M, Štelmachovič P, Gisin N and Bužek V 2002 Phys. Rev. Lett. 88 097905
[63] Bruneau L, Joye A and Merkli M 2014 J. Math. Phys. 55 075204
[64] Grimmer D, Layden D, Mann R B and Martín-Martínez E 2016 Phys. Rev. A 94 032126
[65] Bäumer E, Perarnau-Llobet M, Kammerlander P, Wilming H and Renner R 2019 Quantum 3 153
[66] Bernardes N K, Carvalho A R R, Monken C H and Santos M F 2014 Phys. Rev. A 90 032111
[67] Rodrigues F L S, Chiara G D, Paternostro M and Landi G T 2019 Phys. Rev. Lett. 123 140601
[68] Hammam K, Hassouni Y, Fazio R and Manzano G 2021 New J. Phys. 23 043024
[69] Guarnieri G, Morrone D, Cakmak B and Plastina F 2020 Phys. Lett. A 384 126576
[70] Stable A L L, Noa C E F, Oropesa W G C and Fiore C E 2020 Phys. Rev. Res 2 043016
[71] Strasberg P, Schaller G, Brandes T and Esposito M 2017 Phys. Rev. X 7 021003
[72] Cattaneo M, Chiara G D, Maniscalco S and Zambrini R 2021 Phys. Rev. Lett. 126 130403
[73] Seah S, Nimmrichter S and Scarani V 2019 Phys. Rev. E 99 042103
[74] García-Pérez G, Rossi M A C and Maniscalco S 2020 NPJ Quantum. Inf 6 1
[75] Levy A, Diósi L and Kosloff R 2016 Phys. Rev. A 93 052119
[76] Ferraro D, Andolina G M, Campisi M and Pellegrini V 2019 Phys. Rev. B 100 075433
[77] Andolina G M, Keck M, Mari A and Campisi M 2019 Phys. Rev. Lett. 122 047702
[78] Pirmoradian F and Molmer K 2019 Phys. Rev. A 100 043833
[79] Monsel J, Fellous-Asiani M, Huard B and Aufféves A 2020 Phys. Rev. Lett. 124 130601
[80] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[81] Rodrigues F, Chiara G D, Paternostro M and Landi G T 2019 Phys. Rev. Lett. 123 140601
[82] Giovannetti V and Palma G M 2012 Phys. Rev. Lett. 108 040401
[83] Karevski D and Platini T 2009 Phys. Rev. Lett. 102 207207
[84] Barra F 2015 Sci. Rep. 5 14873
[85] De Chiara G, Landi G, Hewgill A, Reid B, Ferraro A, Roncaglia A J and Antezza M 2018 New J. Phys. 20 113024
[86] Cavina V, Mari A and Giovannetti V 2017 Phys. Rev. Lett. 119 050601
[87] Crescente A, Carrega M, Sassetti M and Ferraro D 2020 Phys. Rev. B 102 245407
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[3] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[4] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[5] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[6] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[7] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[8] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[9] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[10] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[11] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[12] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[13] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[14] The heat and work of quantum thermodynamic processes with quantum coherence
Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞). Chin. Phys. B, 2018, 27(6): 060502.
[15] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
No Suggested Reading articles found!