Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 080301    DOI: 10.1088/1674-1056/add4e7
GENERAL Prev   Next  

Optimal multi-parameter quantum metrology for frequencies of magnetic field

Zhenhua Long(龙振华)1 and Shengshi Pang(庞盛世)1,2,†
1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China;
2 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Abstract  Multi-parameter quantum estimation has attracted considerable attention due to its broad applications. Due to the complexity of quantum dynamics, existing research places significant emphasis on estimating parameters in time-independent Hamiltonians. Here, our work makes an effort to explore multi-parameter estimation with time-dependent Hamiltonians. In particular, we focus on the discrimination of two close frequencies of a magnetic field by using a single qubit. We optimize the quantum controls by employing both traditional optimization methods and reinforcement learning to improve the precision for estimating the frequencies of the two magnetic fields. In addition to the estimation precision, we also evaluate the robustness of the optimization schemes against the shift of the control parameters. The results demonstrate that the hybrid reinforcement learning approach achieves the highest estimation precision, and exhibits superior robustness. Moreover, a fundamental challenge in multi-parameter quantum estimation stems from the incompatibility of the optimal control strategies for different parameters. We demonstrate that the hybrid control strategies derived through numerical optimization remain effective in enhancing the precision of multi-parameter estimation in spite of the incompatibilities, thereby mitigating incompatibilities between control strategies on the estimation precision. Finally, we investigate the trade-offs in estimation precision among different parameters for different scenarios, revealing the inherent challenges in balancing the optimization of multiple parameters simultaneously and providing insights into the fundamental distinction between quantum single-parameter estimation and multi-parameter estimation.
Keywords:  quantum metrology      multi-parameter estimation      quantum control  
Received:  18 March 2025      Revised:  22 April 2025      Accepted manuscript online:  07 May 2025
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
Fund: Shengshi Pang
Corresponding Authors:  Shengshi Pang     E-mail:  pangshsh@mail.sysu.edu.cn

Cite this article: 

Zhenhua Long(龙振华) and Shengshi Pang(庞盛世) Optimal multi-parameter quantum metrology for frequencies of magnetic field 2025 Chin. Phys. B 34 080301

[1] Helstrom C W 1969 J. Stat. Phys. 1 231
[2] Caves C M 1981 Phys. Rev. D 23 1693
[3] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[4] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[5] Paris M G A 2009 International Journal of Quantum Information 07 125
[6] Escher B M, de Matos Filho R L and Davidovich L 2011 Nat. Phys. 7 406
[7] Tsang M 2013 New J. Phys. 15 073005
[8] Demkowicz-Dobrzański R 2014 Phys. Rev. Lett. 113 250801
[9] Tan Q S, Huang Y, Yin X, Kuang L M and Wang X 2013 Phys. Rev. A 87 032102
[10] Buzek V, Derka R and Massar S 1999 Phys. Rev. Lett. 82 2207
[11] Derevianko A and Katori H 2011 Rev. Mod. Phys. 83 331
[12] Ludlow A D, BoydMM, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[13] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649
[14] Michael A Taylor and Warwick P Bowen 2016 Phys. Rep. 615 1
[15] Cox G 2017 Optical Imaging Techniques in Cell Biology, 2nd edn. (CRC Press)
[16] Kolobov M I 1999 Rev. Mod. Phys. 71 1539
[17] Lugiato L A, Gatti A and Brambilla E 2002 J. Opt. B: Quantum Semiclass. Opt. 4 S176
[18] Brida G, Genovese M and Ruo Berchera I 2010 Nat. Photon. 4 227
[19] Morris P A, Aspden R S, Bell J E C, Boyd R W and Padgett M J 2015 Nat. Commun. 6 5913
[20] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002
[21] Pirandola S, Bardhan B R, Gehring T, Weedbrook C and Lloyd S 2018 Nat. Photon. 12 724
[22] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[23] Dorner U, Demkowicz-Dobrzanski R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. Lett. 102 040403
[24] Humphreys P C, Barbieri M, Datta A and Walmsley I A 2013 Phys. Rev. Lett. 111 070403
[25] Safránek D and Fuentes I 2016 Phys. Rev. A 94 062313
[26] Armen M A, Au J K, Stockton J K, Doherty A C and Mabuchi H 2002 Phys. Rev. Lett. 89 133602
[27] Yue J D, Zhang Y R and Fan H 2014 Sci. Rep. 5933 2045
[28] Brask J B, Chaves R and Kołodyński J 2015 Phys. Rev. X 5 031010
[29] Knott P A, Proctor T J, Hayes A J, Ralph J F, Kok P and Dunningham J A 2016 Phys. Rev. A 94 062312
[30] Pang S and Jordan A N 2017 Nat. Commun. 14695 2041
[31] Yuan H and Fung C H F 2015 Phys. Rev. Lett. 115 110401
[32] Liu J and Yuan H 2017 Phys. Rev. A 96 012117
[33] Liu J and Yuan H 2017 Phys. Rev. A 96 042114
[34] Lei X, Fan J and Pang S 2024 Chin. Phys. B 33 060304
[35] Sutton R S and Barto A G 2018 Reinforcement Learning, An Introduction, 2nd edn. (Cambridge, Massachusetts: Bradford Books)
[36] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431
[37] Deng D L, Li X and Das Sarma S 2017 Phys. Rev. X 7 021021
[38] Hsu Y T, Li X, Deng D L and Das Sarma S 2018 Phys. Rev. Lett. 121 245701
[39] Xu H, Li J, Liu L, Wang Y, Yuan H and Wang X 2019 npj Quantum Information 5 1
[40] Xu H, Wang L, Yuan H and Wang X 2021 Phys. Rev. A 103 042615
[41] Xiao T, Fan J and Zeng G 2022 npj Quantum Information 8 1
[42] Care C M 1983 Phys. Bull. 34 395
[43] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[44] Braunstein S, Caves C and Milburn G 1996 Ann. Phys. 247 135
[45] Szczykulska M, Baumgratz T and Datta A 2016 Adv. Phys. X 1 621
[46] Liu J, Yuan H, Lu X M and Wang X 2019 J. Phys. A: Math. Theor. 53 023001
[47] Ragy S, Jarzyna M and Demkowicz-Dobrzański R 2016 Phys. Rev. A 94 052108
[48] Hou Z, Tang J F, Chen H, Yuan H, Xiang G Y, Li C F and Guo G C 2021 Sci. Adv. 7 eabd2986
[49] Serge Massar 2000 Phys. Rev. A 61 042312
[50] Xia B, Huang J, Li H, Wang H and Zeng G 2023 Nat. Commun. 14 1021
[51] Belliardo F and Giovannetti V 2021 New J. Phys. 23 063055
[52] Helstrom C W 1967 Phys. Lett. A 25 101
[53] Yuen H and Lax M 1973 IEEE Transactions on Information Theory 19 740
[54] Matsumoto K 2002 J. Phys. A: Math. Gen. 35 3111
[55] Pezzè L, Ciampini M A, Spagnolo N, Humphreys P C, Datta A,Walmsley I A, Barbieri M, Sciarrino F and Smerzi A 2017 Phys. Rev. Lett. 119 130504
[56] Suzuki J 2019 Entropy 21 703
[57] Suzuki J 2019 Entropy 21 703
[58] Suzuki J 2016 J. Math. Phys. 57 042201
[59] Hu Z, Wang S, Qiao L, Isogawa T, Li C, Yang Y, Wang G, Yuan H and Cappellaro P 2024 arXiv:2411.18896[quant-ph]
[60] Mnih V 2016 arXiv preprint arXiv:1602.01783
[1] Precision bounds for quantum phase estimation using two-mode squeezed Gaussian states
Jian-Dong Zhang(张建东), Chuang Li(李闯), Lili Hou(侯丽丽), and Shuai Wang(王帅). Chin. Phys. B, 2025, 34(1): 010304.
[2] Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction
Zhiyao Hu(胡知遥), Qixian Li(李其贤), Xuanchen Zhang(张轩晨), He-Bin Zhang(张贺宾), Long-Gang Huang(黄龙刚), and Yong-Chun Liu(刘永椿). Chin. Phys. B, 2024, 33(8): 080601.
[3] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[4] Simulations of superconducting quantum gates by digital flux tuner for qubits
Xiao Geng(耿霄), Kaiyong He(何楷泳), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2024, 33(7): 070305.
[5] Enhancing quantum metrology for multiple frequencies of oscillating magnetic fields by quantum control
Xin Lei(雷昕), Jingyi Fan(范静怡), and Shengshi Pang(庞盛世). Chin. Phys. B, 2024, 33(6): 060304.
[6] Quantum control based on three forms of Lyapunov functions
Guo-Hui Yu(俞国慧) and Hong-Li Yang(杨洪礼). Chin. Phys. B, 2024, 33(4): 040201.
[7] Holevo bound independent of weight matrices for estimating two parameters of a qubit
Chang Niu(牛畅) and Sixia Yu(郁司夏). Chin. Phys. B, 2024, 33(2): 020304.
[8] Exact quantum dynamics for two-level systems with time-dependent driving
Zhi-Cheng He(贺郅程), Yi-Xuan Wu(吴奕璇), and Zheng-Yuan Xue(薛正远). Chin. Phys. B, 2024, 33(12): 120310.
[9] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[10] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[11] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[12] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[13] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[14] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[15] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
No Suggested Reading articles found!