|
|
|
Optimal multi-parameter quantum metrology for frequencies of magnetic field |
| Zhenhua Long(龙振华)1 and Shengshi Pang(庞盛世)1,2,† |
1 School of Physics, Sun Yat-sen University, Guangzhou 510275, China; 2 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China |
|
|
|
|
Abstract Multi-parameter quantum estimation has attracted considerable attention due to its broad applications. Due to the complexity of quantum dynamics, existing research places significant emphasis on estimating parameters in time-independent Hamiltonians. Here, our work makes an effort to explore multi-parameter estimation with time-dependent Hamiltonians. In particular, we focus on the discrimination of two close frequencies of a magnetic field by using a single qubit. We optimize the quantum controls by employing both traditional optimization methods and reinforcement learning to improve the precision for estimating the frequencies of the two magnetic fields. In addition to the estimation precision, we also evaluate the robustness of the optimization schemes against the shift of the control parameters. The results demonstrate that the hybrid reinforcement learning approach achieves the highest estimation precision, and exhibits superior robustness. Moreover, a fundamental challenge in multi-parameter quantum estimation stems from the incompatibility of the optimal control strategies for different parameters. We demonstrate that the hybrid control strategies derived through numerical optimization remain effective in enhancing the precision of multi-parameter estimation in spite of the incompatibilities, thereby mitigating incompatibilities between control strategies on the estimation precision. Finally, we investigate the trade-offs in estimation precision among different parameters for different scenarios, revealing the inherent challenges in balancing the optimization of multiple parameters simultaneously and providing insights into the fundamental distinction between quantum single-parameter estimation and multi-parameter estimation.
|
Received: 18 March 2025
Revised: 22 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
| |
03.67.-a
|
(Quantum information)
|
|
| Fund: Shengshi Pang |
Corresponding Authors:
Shengshi Pang
E-mail: pangshsh@mail.sysu.edu.cn
|
Cite this article:
Zhenhua Long(龙振华) and Shengshi Pang(庞盛世) Optimal multi-parameter quantum metrology for frequencies of magnetic field 2025 Chin. Phys. B 34 080301
|
[1] Helstrom C W 1969 J. Stat. Phys. 1 231 [2] Caves C M 1981 Phys. Rev. D 23 1693 [3] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330 [4] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222 [5] Paris M G A 2009 International Journal of Quantum Information 07 125 [6] Escher B M, de Matos Filho R L and Davidovich L 2011 Nat. Phys. 7 406 [7] Tsang M 2013 New J. Phys. 15 073005 [8] Demkowicz-Dobrzański R 2014 Phys. Rev. Lett. 113 250801 [9] Tan Q S, Huang Y, Yin X, Kuang L M and Wang X 2013 Phys. Rev. A 87 032102 [10] Buzek V, Derka R and Massar S 1999 Phys. Rev. Lett. 82 2207 [11] Derevianko A and Katori H 2011 Rev. Mod. Phys. 83 331 [12] Ludlow A D, BoydMM, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637 [13] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649 [14] Michael A Taylor and Warwick P Bowen 2016 Phys. Rep. 615 1 [15] Cox G 2017 Optical Imaging Techniques in Cell Biology, 2nd edn. (CRC Press) [16] Kolobov M I 1999 Rev. Mod. Phys. 71 1539 [17] Lugiato L A, Gatti A and Brambilla E 2002 J. Opt. B: Quantum Semiclass. Opt. 4 S176 [18] Brida G, Genovese M and Ruo Berchera I 2010 Nat. Photon. 4 227 [19] Morris P A, Aspden R S, Bell J E C, Boyd R W and Padgett M J 2015 Nat. Commun. 6 5913 [20] Degen C L, Reinhard F and Cappellaro P 2017 Rev. Mod. Phys. 89 035002 [21] Pirandola S, Bardhan B R, Gehring T, Weedbrook C and Lloyd S 2018 Nat. Photon. 12 724 [22] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401 [23] Dorner U, Demkowicz-Dobrzanski R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. Lett. 102 040403 [24] Humphreys P C, Barbieri M, Datta A and Walmsley I A 2013 Phys. Rev. Lett. 111 070403 [25] Safránek D and Fuentes I 2016 Phys. Rev. A 94 062313 [26] Armen M A, Au J K, Stockton J K, Doherty A C and Mabuchi H 2002 Phys. Rev. Lett. 89 133602 [27] Yue J D, Zhang Y R and Fan H 2014 Sci. Rep. 5933 2045 [28] Brask J B, Chaves R and Kołodyński J 2015 Phys. Rev. X 5 031010 [29] Knott P A, Proctor T J, Hayes A J, Ralph J F, Kok P and Dunningham J A 2016 Phys. Rev. A 94 062312 [30] Pang S and Jordan A N 2017 Nat. Commun. 14695 2041 [31] Yuan H and Fung C H F 2015 Phys. Rev. Lett. 115 110401 [32] Liu J and Yuan H 2017 Phys. Rev. A 96 012117 [33] Liu J and Yuan H 2017 Phys. Rev. A 96 042114 [34] Lei X, Fan J and Pang S 2024 Chin. Phys. B 33 060304 [35] Sutton R S and Barto A G 2018 Reinforcement Learning, An Introduction, 2nd edn. (Cambridge, Massachusetts: Bradford Books) [36] Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 [37] Deng D L, Li X and Das Sarma S 2017 Phys. Rev. X 7 021021 [38] Hsu Y T, Li X, Deng D L and Das Sarma S 2018 Phys. Rev. Lett. 121 245701 [39] Xu H, Li J, Liu L, Wang Y, Yuan H and Wang X 2019 npj Quantum Information 5 1 [40] Xu H, Wang L, Yuan H and Wang X 2021 Phys. Rev. A 103 042615 [41] Xiao T, Fan J and Zeng G 2022 npj Quantum Information 8 1 [42] Care C M 1983 Phys. Bull. 34 395 [43] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 [44] Braunstein S, Caves C and Milburn G 1996 Ann. Phys. 247 135 [45] Szczykulska M, Baumgratz T and Datta A 2016 Adv. Phys. X 1 621 [46] Liu J, Yuan H, Lu X M and Wang X 2019 J. Phys. A: Math. Theor. 53 023001 [47] Ragy S, Jarzyna M and Demkowicz-Dobrzański R 2016 Phys. Rev. A 94 052108 [48] Hou Z, Tang J F, Chen H, Yuan H, Xiang G Y, Li C F and Guo G C 2021 Sci. Adv. 7 eabd2986 [49] Serge Massar 2000 Phys. Rev. A 61 042312 [50] Xia B, Huang J, Li H, Wang H and Zeng G 2023 Nat. Commun. 14 1021 [51] Belliardo F and Giovannetti V 2021 New J. Phys. 23 063055 [52] Helstrom C W 1967 Phys. Lett. A 25 101 [53] Yuen H and Lax M 1973 IEEE Transactions on Information Theory 19 740 [54] Matsumoto K 2002 J. Phys. A: Math. Gen. 35 3111 [55] Pezzè L, Ciampini M A, Spagnolo N, Humphreys P C, Datta A,Walmsley I A, Barbieri M, Sciarrino F and Smerzi A 2017 Phys. Rev. Lett. 119 130504 [56] Suzuki J 2019 Entropy 21 703 [57] Suzuki J 2019 Entropy 21 703 [58] Suzuki J 2016 J. Math. Phys. 57 042201 [59] Hu Z, Wang S, Qiao L, Isogawa T, Li C, Yang Y, Wang G, Yuan H and Cappellaro P 2024 arXiv:2411.18896[quant-ph] [60] Mnih V 2016 arXiv preprint arXiv:1602.01783 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|